Suppr超能文献

通过多尺度谱聚类进行皮层的分组分割。

Group-wise parcellation of the cortex through multi-scale spectral clustering.

作者信息

Parisot Sarah, Arslan Salim, Passerat-Palmbach Jonathan, Wells William M, Rueckert Daniel

机构信息

Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ, UK.

Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ, UK.

出版信息

Neuroimage. 2016 Aug 1;136:68-83. doi: 10.1016/j.neuroimage.2016.05.035. Epub 2016 May 15.

Abstract

The delineation of functionally and structurally distinct regions as well as their connectivity can provide key knowledge towards understanding the brain's behaviour and function. Cytoarchitecture has long been the gold standard for such parcellation tasks, but has poor scalability and cannot be mapped in vivo. Functional and diffusion magnetic resonance imaging allow in vivo mapping of brain's connectivity and the parcellation of the brain based on local connectivity information. Several methods have been developed for single subject connectivity driven parcellation, but very few have tackled the task of group-wise parcellation, which is essential for uncovering group specific behaviours. In this paper, we propose a group-wise connectivity-driven parcellation method based on spectral clustering that captures local connectivity information at multiple scales and directly enforces correspondences between subjects. The method is applied to diffusion Magnetic Resonance Imaging driven parcellation on two independent groups of 50 subjects from the Human Connectome Project. Promising quantitative and qualitative results in terms of information loss, modality comparisons, group consistency and inter-group similarities demonstrate the potential of the method.

摘要

对功能和结构上不同的区域及其连通性进行描绘,可以为理解大脑的行为和功能提供关键知识。细胞构筑学长期以来一直是此类脑区划分任务的金标准,但扩展性较差且无法在活体中进行映射。功能磁共振成像和扩散磁共振成像能够在活体中绘制大脑的连通性,并基于局部连通性信息对大脑进行分区。已经开发了几种用于单个体连通性驱动的脑区划分方法,但很少有方法解决群体脑区划分的任务,而这对于揭示群体特定行为至关重要。在本文中,我们提出了一种基于谱聚类的群体连通性驱动的脑区划分方法,该方法在多个尺度上捕捉局部连通性信息,并直接强制个体之间的对应关系。该方法应用于来自人类连接组计划的两组各50名受试者的扩散磁共振成像驱动的脑区划分。在信息损失、模态比较、群体一致性和组间相似性方面取得的有前景的定量和定性结果证明了该方法的潜力。

相似文献

1
Group-wise parcellation of the cortex through multi-scale spectral clustering.通过多尺度谱聚类进行皮层的分组分割。
Neuroimage. 2016 Aug 1;136:68-83. doi: 10.1016/j.neuroimage.2016.05.035. Epub 2016 May 15.
6
Inter-subject connectivity-based parcellation of a patch of cerebral cortex.基于受试者间连通性的脑皮质区域划分
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):347-54. doi: 10.1007/978-3-642-15745-5_43.
9
A flexible graphical model for multi-modal parcellation of the cortex.一种用于皮层多模态分割的灵活图形模型。
Neuroimage. 2017 Nov 15;162:226-248. doi: 10.1016/j.neuroimage.2017.09.005. Epub 2017 Sep 6.

引用本文的文献

2
Evaluation of functional MRI-based human brain parcellation: a review.基于功能磁共振成像的人脑分割评估:综述。
J Neurophysiol. 2022 Jul 1;128(1):197-217. doi: 10.1152/jn.00411.2021. Epub 2022 Jun 8.
4
A Multiscale Clustering Approach for Non-IID Nominal Data.多尺度聚类方法在非独立同分布标称数据上的应用。
Comput Intell Neurosci. 2021 Oct 11;2021:8993543. doi: 10.1155/2021/8993543. eCollection 2021.
6
Principles and open questions in functional brain network reconstruction.功能脑网络重建中的原理和开放性问题。
Hum Brain Mapp. 2021 Aug 1;42(11):3680-3711. doi: 10.1002/hbm.25462. Epub 2021 May 20.
9
Optimising network modelling methods for fMRI.优化功能磁共振成像的网络建模方法。
Neuroimage. 2020 May 1;211:116604. doi: 10.1016/j.neuroimage.2020.116604. Epub 2020 Feb 13.

本文引用的文献

1
Connectivity-based parcellation: Critique and implications.基于连通性的脑区划分:批判与启示
Hum Brain Mapp. 2015 Dec;36(12):4771-92. doi: 10.1002/hbm.22933. Epub 2015 Sep 27.
5
Functional Segregation of the Human Dorsomedial Prefrontal Cortex.人类背内侧前额叶皮层的功能分离
Cereb Cortex. 2016 Jan;26(1):304-21. doi: 10.1093/cercor/bhu250. Epub 2014 Oct 20.
7
MSM: a new flexible framework for Multimodal Surface Matching.MSM:一种用于多模态表面匹配的新型灵活框架。
Neuroimage. 2014 Oct 15;100:414-26. doi: 10.1016/j.neuroimage.2014.05.069. Epub 2014 Jun 2.
8
Towards quantitative connectivity analysis: reducing tractography biases.走向定量连接分析:减少轨迹分析偏差。
Neuroimage. 2014 Sep;98:266-78. doi: 10.1016/j.neuroimage.2014.04.074. Epub 2014 May 9.
9
A hierarchical method for whole-brain connectivity-based parcellation.一种基于全脑连接性的分层分割方法。
Hum Brain Mapp. 2014 Oct;35(10):5000-25. doi: 10.1002/hbm.22528. Epub 2014 Apr 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验