University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
Int J Antimicrob Agents. 2015 Dec;46(6):713-7. doi: 10.1016/j.ijantimicag.2015.09.007. Epub 2015 Oct 17.
Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in Etests demonstrated increased bioluminescence at sub-MICs of different antibiotics. This study aimed to further evaluate the influence of antibiotic pressure on bioluminescence in S. aureus Xen29. Bioluminescence of S. aureus Xen29, grown planktonically in tryptone soy broth, was quantified in the absence and presence of different concentrations of vancomycin, ciprofloxacin, erythromycin or chloramphenicol and was related to expression of the luxA gene under antibiotic pressure measured using real-time PCR. In the absence of antibiotics, staphylococcal bioluminescence increased over time until a maximum after ca. 6h of growth, and subsequently decreased to the detection threshold after 24h of growth owing to reduced bacterial metabolic activity. Up to MICs of the antibiotics, bioluminescence increased according to a similar pattern up to 6h of growth, but after 24h bioluminescence was higher than in the absence of antibiotics. Contrary to expectations, bioluminescence per organism (CFU) after different growth periods in the absence and at MICs of different antibiotics decreased with increasing expression of luxA. Summarising, antibiotic pressure impacts the relation between CFU and bioluminescence. Under antibiotic pressure, bioluminescence is not controlled by luxA expression but by co-factors impacting the bacterial metabolic activity. This conclusion is of utmost importance when evaluating antibiotic efficacy in live animals using bioluminescent bacterial strains.
生物发光成像是用于在活体动物中对细菌进行纵向评估的方法。细菌数量与其生物发光之间存在明确的关系。然而,在 Etest 中,在胰蛋白胨大豆琼脂上生长的金黄色葡萄球菌 Xen29、金黄色葡萄球菌 Xen36 和大肠杆菌 Xen14 的生物发光图像显示,在不同抗生素的亚 MIC 下,生物发光增加。本研究旨在进一步评估抗生素压力对金黄色葡萄球菌 Xen29 生物发光的影响。在不存在和存在不同浓度万古霉素、环丙沙星、红霉素或氯霉素的情况下,定量测定在胰蛋白胨大豆肉汤中浮游生长的金黄色葡萄球菌 Xen29 的生物发光,并将其与抗生素压力下 luxA 基因表达使用实时 PCR 进行测量。在不存在抗生素的情况下,葡萄球菌生物发光随着时间的推移而增加,直到生长约 6 小时后达到最大值,随后由于细菌代谢活性降低,在 24 小时的生长后降至检测阈值以下。在抗生素的 MIC 下,生物发光的增加遵循类似的模式,直到 6 小时的生长,但在 24 小时后,生物发光高于不存在抗生素的情况。出乎意料的是,在不存在和不同抗生素 MIC 下不同生长时期的每个生物体(CFU)的生物发光都随着 luxA 表达的增加而减少。总之,抗生素压力会影响 CFU 和生物发光之间的关系。在抗生素压力下,生物发光不受 luxA 表达的控制,而是受影响细菌代谢活性的协同因子控制。当使用生物发光细菌株在活体动物中评估抗生素疗效时,这一结论至关重要。