Salmon Phil L, Ohlsson Claes, Shefelbine Sandra J, Doube Michael
Bruker micro-CT , Kontich , Belgium.
Center for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg , Gothenburg , Sweden.
Front Endocrinol (Lausanne). 2015 Oct 13;6:162. doi: 10.3389/fendo.2015.00162. eCollection 2015.
Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI(+)) and negative (SMI(-)) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabecule and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155-0.700). SMI is unavoidably influenced by aberrations induced by SMI(-), which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabecule. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with suspicion. We propose that EF should be used instead of SMI for measurements of rods and plates in trabecular bone.
结构模型指数(SMI)被广泛用于测量小梁骨中的杆状和板状结构。它利用了随着结构从球形(SMI = 4)变为圆柱形(SMI = 3)再变为平面形(SMI = 0)而发生的表面曲率变化。SMI背后最重要的假设是整个骨表面是凸的,并且表面上所有点的曲率差都是正的。小梁连续体中的复杂连接表明,很大一部分表面可能是凹的,这违反了凸性假设并产生了负差区域。我们在BoneJ插件中实现了SMI,并具备测量表面网格扩张后面积增加或减少的表面量的能力,以及可视化凹面和凸面区域的能力。我们使用来自大鼠卵巢切除模型的38张X射线显微断层扫描(XMT)图像,该模型用于研究性类固醇对骨质流失的挽救作用,以及来自87种物种(哺乳动物、鸟类和一只鳄鱼)广泛选择的169张XMT图像,测量了小梁骨中的SMI及其正(SMI(+))和负(SMI(-))分量、骨体积分数(BV/TV)、凹面表面分数(CF)和平均椭球因子(EF)。我们通过侵蚀大象小梁的图像并在每个侵蚀步骤记录SMI和BV/TV来模拟骨吸收。高达70%,很少低于20%的小梁表面是凹的(CF为0.155 - 0.700)。SMI不可避免地受到SMI(-)引起的偏差的影响,SMI(-)与BV/TV和CF密切相关。骨质流失中从板状到杆状的转变是由于SMI和BV/TV之间紧密且人为的关系导致的错误观察结果。SMI无法区分哺乳动物和鸟类骨骼典型的独特小梁几何形状,而EF能清晰地检测到鸟类更多的板状小梁。EF不受与BV/TV和CF的混淆关系的影响。文献中报道的SMI结果应谨慎对待。我们建议在测量小梁骨中的杆状和板状结构时应使用EF而非SMI。