Geng Tao, Bredeweg Erin L, Szymanski Craig J, Liu Bingwen, Baker Scott E, Orr Galya, Evans James E, Kelly Ryan T
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
Sci Rep. 2015 Nov 4;5:16111. doi: 10.1038/srep16111.
Interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of scientific applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, our microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange. Although the microfluidic device is demonstrated on filamentous fungi, the technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth, with applications ranging from bioenergy production to human health.
由于传统实验中广泛的细胞分支和不可控的环境条件,研究极化生长在技术上具有挑战性。在此,我们展示了一种强大且高性能的微流控系统,该系统能够在长时间内增强对时间和空间的控制,从而实现对极化生长的观察。该系统具有内置的可调性和通用性,可适应各种需要精确控制环境的科学应用。使用丝状真菌模式生物粗糙脉孢菌,我们的微流控系统能够直接可视化和分析克隆真菌细胞群体中的细胞异质性、亚菌丝水平的核分布和动态,以及在碳源饥饿和交换响应下具有单个菌丝隔室分辨率的基因表达定量动态。尽管该微流控装置已在丝状真菌上得到验证,但该技术可立即扩展到其他表现出类似极化细胞生长的广泛生物系统,其应用范围从生物能源生产到人类健康。