Suppr超能文献

群体水平和单细胞水平基因表达的长期模型预测控制。

Long-term model predictive control of gene expression at the population and single-cell levels.

机构信息

Contraintes Research Group, Institut National de Recherche en Informatique et en Automatique, INRIA Paris-Rocquencourt, 78150 Rocquencourt, France.

出版信息

Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14271-6. doi: 10.1073/pnas.1206810109. Epub 2012 Aug 14.

Abstract

Gene expression plays a central role in the orchestration of cellular processes. The use of inducible promoters to change the expression level of a gene from its physiological level has significantly contributed to the understanding of the functioning of regulatory networks. However, from a quantitative point of view, their use is limited to short-term, population-scale studies to average out cell-to-cell variability and gene expression noise and limit the nonpredictable effects of internal feedback loops that may antagonize the inducer action. Here, we show that, by implementing an external feedback loop, one can tightly control the expression of a gene over many cell generations with quantitative accuracy. To reach this goal, we developed a platform for real-time, closed-loop control of gene expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics to manipulate the cells' environment, and original software for automated imaging, quantification, and model predictive control. By using an endogenous osmostress responsive promoter and playing with the osmolarity of the cells environment, we show that long-term control can, indeed, be achieved for both time-constant and time-varying target profiles at the population and even the single-cell levels. Importantly, we provide evidence that real-time control can dynamically limit the effects of gene expression stochasticity. We anticipate that our method will be useful to quantitatively probe the dynamic properties of cellular processes and drive complex, synthetically engineered networks.

摘要

基因表达在细胞过程的协调中起着核心作用。使用诱导型启动子来改变基因的表达水平,使其超出生理水平,这对理解调控网络的功能有很大的帮助。然而,从定量的角度来看,它们的使用仅限于短期的、基于群体的研究,以平均细胞间的变异性和基因表达噪声,并限制内部反馈回路的不可预测的影响,这些影响可能会拮抗诱导剂的作用。在这里,我们展示了通过实现外部反馈回路,可以在多个细胞世代中以定量精度紧密控制基因的表达。为了实现这一目标,我们开发了一个用于酵母中基因表达的实时、闭环控制平台,该平台集成了用于监测细胞水平基因表达的显微镜、用于操纵细胞环境的微流控技术以及用于自动成像、定量和模型预测控制的原始软件。通过使用内源性渗透压响应启动子并调整细胞环境的渗透压,我们证明了长期控制确实可以在群体水平甚至单细胞水平上实现对时不变和时变目标曲线的控制。重要的是,我们提供了证据表明实时控制可以动态地限制基因表达随机性的影响。我们预计,我们的方法将有助于定量研究细胞过程的动态特性,并驱动复杂的、合成工程网络。

相似文献

2
In silico control of biomolecular processes.生物分子过程的计算机模拟控制
Methods Mol Biol. 2015;1244:277-85. doi: 10.1007/978-1-4939-1878-2_13.
3
Systems biology. Enlightening Rhythms.系统生物学。启迪节律。
Science. 2008 Jan 25;319(5862):417-8. doi: 10.1126/science.1154208.

引用本文的文献

6
Cybergenetic control of microbial community composition.微生物群落组成的网络遗传控制。
Front Bioeng Biotechnol. 2022 Oct 6;10:957140. doi: 10.3389/fbioe.2022.957140. eCollection 2022.
10

本文引用的文献

1
Moment-based inference predicts bimodality in transient gene expression.基于矩的推断预测瞬时基因表达的双峰性。
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8340-5. doi: 10.1073/pnas.1200161109. Epub 2012 May 7.
4
Antagonistic gene transcripts regulate adaptation to new growth environments.拮抗基因转录本调控对新生长环境的适应。
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21087-92. doi: 10.1073/pnas.1111408109. Epub 2011 Dec 12.
7
The Dynamical Systems Properties of the HOG Signaling Cascade.HOG信号级联的动力学系统特性
J Signal Transduct. 2011;2011:930940. doi: 10.1155/2011/930940. Epub 2011 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验