Suppr超能文献

用于时空计数数据分析的贝叶斯惩罚样条模型。

Bayesian penalized spline models for the analysis of spatio-temporal count data.

作者信息

Bauer Cici, Wakefield Jon, Rue Håvard, Self Steve, Feng Zijian, Wang Yu

机构信息

Department of Biostatistics, Brown University, Providence, RI, U.S.A.

Department of Statistics, University of Washington, Seattle, WA, U.S.A.

出版信息

Stat Med. 2016 May 20;35(11):1848-65. doi: 10.1002/sim.6785. Epub 2015 Nov 3.

Abstract

In recent years, the availability of infectious disease counts in time and space has increased, and consequently, there has been renewed interest in model formulation for such data. In this paper, we describe a model that was motivated by the need to analyze hand, foot, and mouth disease surveillance data in China. The data are aggregated by geographical areas and by week, with the aims of the analysis being to gain insight into the space-time dynamics and to make short-term predictions, which will aid in the implementation of public health campaigns in those areas with a large predicted disease burden. The model we develop decomposes disease-risk into marginal spatial and temporal components and a space-time interaction piece. The latter is the crucial element, and we use a tensor product spline model with a Markov random field prior on the coefficients of the basis functions. The model can be formulated as a Gaussian Markov random field and so fast computation can be carried out using the integrated nested Laplace approximation approach. A simulation study shows that the model can pick up complex space-time structure and our analysis of hand, foot, and mouth disease data in the central north region of China provides new insights into the dynamics of the disease.

摘要

近年来,传染病在时间和空间上的计数数据可得性有所增加,因此,人们对针对此类数据的模型构建重新产生了兴趣。在本文中,我们描述了一个因分析中国手足口病监测数据的需求而产生的模型。数据按地理区域和周进行汇总,分析目的是深入了解时空动态并进行短期预测,这将有助于在预测疾病负担较大的地区开展公共卫生运动。我们开发的模型将疾病风险分解为边际空间和时间成分以及一个时空交互项。后者是关键要素,我们使用张量积样条模型,并对基函数系数采用马尔可夫随机场先验。该模型可被表述为高斯马尔可夫随机场,因此可以使用集成嵌套拉普拉斯近似方法进行快速计算。一项模拟研究表明,该模型能够捕捉复杂的时空结构,并且我们对中国中北部地区手足口病数据的分析为该疾病的动态提供了新的见解。

相似文献

4
Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.比较INLA和OpenBUGS在疾病地图分层泊松模型中的应用
Spat Spatiotemporal Epidemiol. 2015 Jul-Oct;14-15:45-54. doi: 10.1016/j.sste.2015.08.001. Epub 2015 Aug 11.
6
Zero-inflated spatio-temporal models for disease mapping.用于疾病映射的零膨胀时空模型。
Biom J. 2017 May;59(3):430-444. doi: 10.1002/bimj.201600120. Epub 2017 Feb 10.
8
Statistical monitoring of the hand, foot and mouth disease in China.中国手足口病的统计监测
Biometrics. 2015 Sep;71(3):841-50. doi: 10.1111/biom.12301. Epub 2015 Mar 31.

引用本文的文献

本文引用的文献

8
Bayesian inference for generalized linear mixed models.贝叶斯推断在广义线性混合模型中的应用。
Biostatistics. 2010 Jul;11(3):397-412. doi: 10.1093/biostatistics/kxp053. Epub 2009 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验