Orthopaedic and Sports Traumatology Department, University of Grenoble, CHU Grenoble South Hospital, Grenoble, France.
Laboratoire TIMC-IMAG-Equipe GMCAO. Institut d'Ingénierie et de l'Information de Santé, La Tronche Cedex, France.
Orthop J Sports Med. 2015 Feb 12;3(2):2325967115570560. doi: 10.1177/2325967115570560. eCollection 2015 Feb.
Various surgical techniques to treat posterolateral knee instability have been described. To date, the recommended treatment is an anatomic form of reconstruction in which the 3 key structures of the posterolateral corner (PLC) are addressed: the popliteofibular ligament, the popliteus tendon, and the lateral collateral ligament.
PURPOSE/HYPOTHESIS: The purpose of this study was to identify the role of each key structure of the PLC in kinematics of the knee and to biomechanically analyze a single-graft, fibular-based reconstruction that replicates the femoral insertions of the lateral collateral ligament and popliteus to repair the PLC. The hypothesis was that knee kinematics can be reasonably restored using a single graft with a 2-strand "modified Larson" technique.
Descriptive laboratory study.
Eight fresh-frozen cadaveric knees were used in this study. We conducted sequential sectioning of the popliteofibular ligament (PFL) and then subsequently the popliteal tendon (PT), the lateral collateral ligament (LCL), and the anterior cruciate ligament (ACL). We then reconstructed the ACL first and then the posterolateral corner using the modified Larson technique. A surgical navigation system was used to measure varus laxity and external rotation at 0°, 30°, 60°, and 90° with a 9.8-N·m varus stress and 5-N·m external rotation force applied to the tibia.
In extension, varus laxity increased only after the sectioning of the lateral collateral ligament. At 30° of flexion, external rotation in varus and translation of the lateral tibial plateau increased after the isolated popliteofibular ligament section. From 60° to 90° of flexion, translation and mobility of the lateral plateau section increased after sectioning of the PFL. After reconstruction, we observed a restoration of external varus rotation in extension and translation of the lateral tibial plateau at 90° of flexion. This technique provided kinematics similar to the normal knee.
The PFL has a key role between 30° and 90° of flexion, and the lateral collateral ligament plays a role in extension. Reconstruction with the modified Larson technique restores these 2 complementary stabilizers of the knee.
Although there are many different techniques to reconstruct the PLC-deficient knee, this study indicates that a single-graft, fibular-based reconstruction of the LCL and PT may restore varus and external rotation laxity to the knee.
已经描述了各种治疗后外侧膝关节不稳定的手术技术。迄今为止,推荐的治疗方法是一种解剖重建形式,其中涉及后外侧角(PLC)的 3 个关键结构:腓肠豆腓韧带、腓肠肌腱和外侧副韧带。
目的/假设:本研究的目的是确定 PLC 的每个关键结构在膝关节运动中的作用,并对生物力学上分析一种单束、基于腓骨的重建,该重建复制了外侧副韧带和腓肠肌的股骨插入物,以修复 PLC。假设是可以使用带有 2 股“改良 Larson”技术的单个移植物合理地恢复膝关节运动学。
描述性实验室研究。
本研究使用了 8 个新鲜冷冻的尸体膝关节。我们依次切断腓肠豆腓韧带(PFL),然后是腓肠肌腱(PT)、外侧副韧带(LCL)和前交叉韧带(ACL)。然后,我们使用改良 Larson 技术首先重建 ACL,然后重建后外侧角。使用手术导航系统在施加 9.8-N·m 外翻力和 5-N·m 外旋力于胫骨时,测量 0°、30°、60°和 90°时的外翻松弛度和外旋。
在伸展时,仅在切断外侧副韧带后才会出现外翻松弛度增加。在 30°屈曲时,单独切断腓肠豆腓韧带后,出现了内翻时的外旋和外侧胫骨平台的平移。从 60°到 90°的屈曲,切断 PFL 后,外侧平台的平移和移动增加。重建后,我们观察到在 90°屈曲时,伸展和外侧胫骨平台的外旋旋转得到了恢复。该技术提供了类似于正常膝关节的运动学。
PFL 在 30°至 90°屈曲之间具有关键作用,外侧副韧带在伸展时起作用。使用改良 Larson 技术重建可恢复膝关节的这 2 个互补稳定器。
尽管有许多不同的技术可以重建 PLC 缺陷的膝关节,但本研究表明,单束、基于腓骨的 LCL 和 PT 重建可以恢复膝关节的外翻和外旋松弛度。