Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):881-6. doi: 10.1073/pnas.1207997110. Epub 2012 Dec 31.
Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.
最近的方法揭示了在平面基底上的细胞对细胞外基质(ECM)施加剪切(平面内)和法向(平面外)牵引力。然而,细胞的法向牵引力相对于细胞的黏附蛋白和细胞骨架元素的位置和起源尚未阐明。我们开发了一种高时空分辨率、多维(2.5D)牵引力显微镜,以测量和模拟细胞在平面 2D 表面上的全 3D 性质的力。我们表明,剪切力集中在拉长的黏附点下,而上、下法向力分别在黏附点的远端(朝向细胞边缘)和近端(朝向细胞体)检测到。这些力一起在突出和回缩的外围区域中在黏附点周围产生显著的旋转力矩。对迁移和扩展细胞的二维牵引力显微镜的时间分析表明,这些旋转力矩非常动态,随着细胞前缘向外传播。最后,我们开发了一个有限元模型来研究在薄的薄片中黏附点周围如何产生旋转力矩。我们的模型表明,旋转力矩可以主要通过从细胞内表面施加的肌动球蛋白收缩力传递到下面的 ECM 来产生,这种收缩力作用在有限厚度刚性黏附点的剪切滞后上。总之,这些数据证明并探测了与黏附有关的以前未被重视的多维应力分布的起源,并强调了采用新方法来描述细胞力的重要性。