Suppr超能文献

多维牵引力显微镜揭示了黏着斑处的面外旋转力矩。

Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):881-6. doi: 10.1073/pnas.1207997110. Epub 2012 Dec 31.

Abstract

Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.

摘要

最近的方法揭示了在平面基底上的细胞对细胞外基质(ECM)施加剪切(平面内)和法向(平面外)牵引力。然而,细胞的法向牵引力相对于细胞的黏附蛋白和细胞骨架元素的位置和起源尚未阐明。我们开发了一种高时空分辨率、多维(2.5D)牵引力显微镜,以测量和模拟细胞在平面 2D 表面上的全 3D 性质的力。我们表明,剪切力集中在拉长的黏附点下,而上、下法向力分别在黏附点的远端(朝向细胞边缘)和近端(朝向细胞体)检测到。这些力一起在突出和回缩的外围区域中在黏附点周围产生显著的旋转力矩。对迁移和扩展细胞的二维牵引力显微镜的时间分析表明,这些旋转力矩非常动态,随着细胞前缘向外传播。最后,我们开发了一个有限元模型来研究在薄的薄片中黏附点周围如何产生旋转力矩。我们的模型表明,旋转力矩可以主要通过从细胞内表面施加的肌动球蛋白收缩力传递到下面的 ECM 来产生,这种收缩力作用在有限厚度刚性黏附点的剪切滞后上。总之,这些数据证明并探测了与黏附有关的以前未被重视的多维应力分布的起源,并强调了采用新方法来描述细胞力的重要性。

相似文献

1
Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):881-6. doi: 10.1073/pnas.1207997110. Epub 2012 Dec 31.
4
Spatiotemporal constraints on the force-dependent growth of focal adhesions.
Biophys J. 2011 Jun 22;100(12):2883-93. doi: 10.1016/j.bpj.2011.05.023.
5
A DNA-based molecular probe for optically reporting cellular traction forces.
Nat Methods. 2014 Dec;11(12):1229-32. doi: 10.1038/nmeth.3145. Epub 2014 Oct 12.
6
Traction force microscopy for understanding cellular mechanotransduction.
BMB Rep. 2020 Feb;53(2):74-81. doi: 10.5483/BMBRep.2020.53.2.308.
7
Visualizing the interior architecture of focal adhesions with high-resolution traction maps.
Nano Lett. 2015 Apr 8;15(4):2220-8. doi: 10.1021/nl5047335. Epub 2015 Mar 23.
8
Theory of the mechanical response of focal adhesions to shear flow.
J Phys Condens Matter. 2010 May 19;22(19):194111. doi: 10.1088/0953-8984/22/19/194111. Epub 2010 Apr 26.
9
Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment.
Biophys J. 2008 Feb 15;94(4):1470-82. doi: 10.1529/biophysj.107.108688. Epub 2007 Oct 12.
10
Traction forces exerted by epithelial cell sheets.
J Phys Condens Matter. 2010 May 19;22(19):194119. doi: 10.1088/0953-8984/22/19/194119. Epub 2010 Apr 26.

引用本文的文献

1
Measuring and manipulating mechanical forces during development.
Nat Cell Biol. 2025 Apr;27(4):575-590. doi: 10.1038/s41556-025-01632-x. Epub 2025 Mar 10.
2
CRB2 depletion induces YAP signaling and disrupts mechanosensing in podocytes.
Am J Physiol Renal Physiol. 2025 Apr 1;328(4):F578-F595. doi: 10.1152/ajprenal.00318.2024. Epub 2025 Mar 10.
3
CRB2 Depletion Induces YAP Signaling and Disrupts Mechanosensing in Podocytes.
bioRxiv. 2024 Oct 26:2024.10.22.619513. doi: 10.1101/2024.10.22.619513.
4
Molecular Force Sensors for Biological Application.
Int J Mol Sci. 2024 Jun 4;25(11):6198. doi: 10.3390/ijms25116198.
5
The Plasma Membrane and Mechanoregulation in Cells.
ACS Omega. 2024 May 13;9(20):21780-21797. doi: 10.1021/acsomega.4c01962. eCollection 2024 May 21.
6
Molecular Compressive Force Sensor for Mapping Forces at the Cell-Substrate Interface.
J Am Chem Soc. 2024 Mar 13;146(10):6830-6836. doi: 10.1021/jacs.3c13648. Epub 2024 Feb 28.
8
Bio-inspired microfluidics: A review.
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
9
Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts.
Matrix Biol. 2023 Nov;123:1-16. doi: 10.1016/j.matbio.2023.08.004. Epub 2023 Sep 1.

本文引用的文献

2
Super-resolution 3D microscopy of live whole cells using structured illumination.
Nat Methods. 2011 Oct 16;8(12):1044-6. doi: 10.1038/nmeth.1734.
3
Dynamic molecular processes mediate cellular mechanotransduction.
Nature. 2011 Jul 20;475(7356):316-23. doi: 10.1038/nature10316.
4
Deformation of an elastic substrate by a three-phase contact line.
Phys Rev Lett. 2011 May 6;106(18):186103. doi: 10.1103/PhysRevLett.106.186103.
5
An adhesion-dependent switch between mechanisms that determine motile cell shape.
PLoS Biol. 2011 May;9(5):e1001059. doi: 10.1371/journal.pbio.1001059. Epub 2011 May 3.
6
Balancing forces: architectural control of mechanotransduction.
Nat Rev Mol Cell Biol. 2011 May;12(5):308-19. doi: 10.1038/nrm3112.
7
Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions.
PLoS One. 2011 Mar 29;6(3):e17833. doi: 10.1371/journal.pone.0017833.
8
4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells.
Phys Rev Lett. 2010 Dec 10;105(24):248103. doi: 10.1103/PhysRevLett.105.248103. Epub 2010 Dec 7.
9
Nanoscale architecture of integrin-based cell adhesions.
Nature. 2010 Nov 25;468(7323):580-4. doi: 10.1038/nature09621.
10
Integrins and extracellular matrix in mechanotransduction.
Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a005066. doi: 10.1101/cshperspect.a005066. Epub 2010 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验