Steenberg Vivi R, Jensen Signe M, Pedersen Jens, Madsen Andreas N, Windeløv Johanne A, Holst Birgitte, Quistorff Bjørn, Poulsen Steen S, Holst Jens J
Section for Translational Metabolic Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, building 12.2, DK-2200, Copenhagen, Denmark.
Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
Diabetologia. 2016 Feb;59(2):363-70. doi: 10.1007/s00125-015-3794-2. Epub 2015 Nov 5.
AIMS/HYPOTHESIS: Normal glucose metabolism depends on pancreatic secretion of insulin and glucagon. The bihormonal hypothesis states that while lack of insulin leads to glucose underutilisation, glucagon excess is the principal factor in diabetic glucose overproduction. A recent study reported that streptozotocin-treated glucagon receptor knockout mice have normal glucose tolerance. We investigated the impact of acute disruption of glucagon secretin or action in a mouse model of severe diabetes by three different approaches: (1) alpha cell elimination; (2) glucagon immunoneutralisation; and (3) glucagon receptor antagonism, in order to evaluate the effect of these on glucose tolerance.
Severe diabetes was induced in transgenic and wild-type mice by streptozotocin. Glucose metabolism was investigated using OGTT in transgenic mice with the human diphtheria toxin receptor expressed in proglucagon producing cells allowing for diphtheria toxin (DT)-induced alpha cell ablation and in mice treated with either a specific high affinity glucagon antibody or a specific glucagon receptor antagonist.
Near-total alpha cell elimination was induced in transgenic mice upon DT administration and resulted in a massive decrease in pancreatic glucagon content. Oral glucose tolerance in diabetic mice was neither affected by glucagon immunoneutralisation, glucagon receptor antagonism, nor alpha cell removal, but did not deteriorate further compared with mice with intact alpha cell mass.
CONCLUSIONS/INTERPRETATION: Disruption of glucagon action/secretion did not improve glucose tolerance in diabetic mice. Near-total alpha cell elimination may have prevented further deterioration. Our findings support insulin lack as the major factor underlying hyperglycaemia in beta cell-deficient diabetes.
目的/假设:正常的葡萄糖代谢依赖于胰腺分泌胰岛素和胰高血糖素。双激素假说认为,虽然胰岛素缺乏会导致葡萄糖利用不足,但胰高血糖素过量是糖尿病患者葡萄糖过度生成的主要因素。最近一项研究报告称,经链脲佐菌素处理的胰高血糖素受体敲除小鼠具有正常的糖耐量。我们通过三种不同方法研究了在严重糖尿病小鼠模型中急性破坏胰高血糖素分泌或作用的影响:(1)α细胞消除;(2)胰高血糖素免疫中和;(3)胰高血糖素受体拮抗,以评估这些方法对糖耐量的影响。
通过链脲佐菌素在转基因和野生型小鼠中诱导严重糖尿病。在胰高血糖素产生细胞中表达人白喉毒素受体的转基因小鼠中,利用口服葡萄糖耐量试验(OGTT)研究葡萄糖代谢,这些小鼠可通过白喉毒素(DT)诱导α细胞消融,同时也研究了用特异性高亲和力胰高血糖素抗体或特异性胰高血糖素受体拮抗剂处理的小鼠的葡萄糖代谢情况。
给转基因小鼠注射DT后诱导了近完全的α细胞消除,并导致胰腺胰高血糖素含量大幅下降。糖尿病小鼠的口服糖耐量既不受胰高血糖素免疫中和、胰高血糖素受体拮抗的影响,也不受α细胞去除的影响,但与α细胞质量完整的小鼠相比,并未进一步恶化。
结论/解读:破坏胰高血糖素作用/分泌并未改善糖尿病小鼠的糖耐量。近完全的α细胞消除可能防止了病情进一步恶化。我们的研究结果支持胰岛素缺乏是β细胞缺陷型糖尿病高血糖的主要潜在因素。