Suppr超能文献

利用学生提出的肽配体对蛋白质受体结合空间进行计算探索。

Computational exploration of a protein receptor binding space with student proposed peptide ligands.

作者信息

King Matthew D, Phillips Paul, Turner Matthew W, Katz Michael, Lew Sarah, Bradburn Sarah, Andersen Tim, McDougal Owen M

机构信息

Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, 83725.

Department of Chemistry and Biochemistry, Biomolecular Sciences PhD Program, Boise State University, Boise, Idaho, 83725.

出版信息

Biochem Mol Biol Educ. 2016 Jan-Feb;44(1):63-7. doi: 10.1002/bmb.20925. Epub 2015 Nov 5.

Abstract

Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

摘要

计算分子对接是一种快速有效的计算机模拟方法,用于分析蛋白质受体模型与配体之间的结合。在三维空间中对蛋白质与配体结合进行可视化和操作,是生物化学课程中增强学生学习效果的有力工具。本文所述的DockoMatic教程提供了一个框架,教师可以通过该框架指导学生完成药物筛选练习。利用从容易获得的蛋白质晶体结构衍生而来的受体模型,对接程序能够预测配体的结合特性,如优先结合方向和结合亲和力。通过深入了解感兴趣系统内重要的分子相互作用,计算研究的使用可以显著增强补充性的湿化学实验,并基于观察到的结合基序和能量学指导新候选配体的设计。在本实验室教程中,图形用户界面DockoMatic便于将对接任务提交给对接引擎AutoDock 4.2。本练习的目的是成功地将一种17个氨基酸的肽α-芋螺毒素TxIA与加州海兔乙酰胆碱结合蛋白-AChBP进行对接,以确定最稳定的结合构型。然后,每个学生将提出α-芋螺毒素TxIA的两个特定氨基酸取代,以增强肽的结合亲和力,在DockoMatic中创建突变体,并进行对接计算,将其结果与全班同学的结果进行比较。学生还将比较他们制备的类似物与初始α-芋螺毒素TxIA对接结果的分子间作用力、结合能和几何取向。

相似文献

2
Homology modeling and molecular docking for the science curriculum.面向科学课程的同源建模与分子对接
Biochem Mol Biol Educ. 2014 Mar-Apr;42(2):179-82. doi: 10.1002/bmb.20767. Epub 2013 Dec 20.
6
Machine learning in computational docking.计算对接中的机器学习。
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.
7

本文引用的文献

3
Discovery, synthesis, and structure-activity relationships of conotoxins.芋螺毒素的发现、合成及构效关系
Chem Rev. 2014 Jun 11;114(11):5815-47. doi: 10.1021/cr400401e. Epub 2014 Apr 10.
8
Virtual screening against acetylcholine binding protein.针对乙酰胆碱结合蛋白的虚拟筛选。
J Biomol Screen. 2012 Feb;17(2):204-15. doi: 10.1177/1087057111421667. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验