Ryabinkin Ilya G, Nagesh Jayashree, Izmaylov Artur F
Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario M1C 1A4, Canada.
Chemical Physics Theory Group, Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada.
J Phys Chem Lett. 2015 Nov 5;6(21):4200-3. doi: 10.1021/acs.jpclett.5b02062. Epub 2015 Oct 9.
We have developed a numerical differentiation scheme that eliminates evaluation of overlap determinants in calculating the time-derivative nonadiabatic couplings (TDNACs). Evaluation of these determinants was the bottleneck in previous implementations of mixed quantum-classical methods using numerical differentiation of electronic wave functions in the Slater determinant representation. The central idea of our approach is, first, to reduce the analytic time derivatives of Slater determinants to time derivatives of molecular orbitals and then to apply a finite-difference formula. Benchmark calculations prove the efficiency of the proposed scheme showing impressive several-order-of-magnitude speedups of the TDNAC calculation step for midsize molecules.
我们开发了一种数值微分方案,该方案在计算含时非绝热耦合(TDNACs)时无需计算重叠行列式。在之前使用斯莱特行列式表示的电子波函数数值微分的混合量子-经典方法实现中,这些行列式的计算是瓶颈。我们方法的核心思想是,首先将斯莱特行列式的解析时间导数简化为分子轨道的时间导数,然后应用有限差分公式。基准计算证明了所提方案的效率,对于中等大小的分子,TDNAC计算步骤实现了令人印象深刻的几个数量级的加速。