Suppr超能文献

匹克氏病和TDP-43蛋白病的半自动数字图像分析

Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.

作者信息

Irwin David J, Byrne Matthew D, McMillan Corey T, Cooper Felicia, Arnold Steven E, Lee Edward B, Van Deerlin Vivianna M, Xie Sharon X, Lee Virginia M-Y, Grossman Murray, Trojanowski John Q

机构信息

Penn Frontotemporal Degeneration Center, Department of Neurology (DJI, MDB, CTM, FC, MG)

Center for Neurodegenerative Disease Research,Department of Pathology & Laboratory Medicine(DJI, MDB, FC, SEA, EBL, VMVD, VML, JQT)

出版信息

J Histochem Cytochem. 2016 Jan;64(1):54-66. doi: 10.1369/0022155415614303. Epub 2015 Nov 4.

Abstract

Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes.

摘要

组织学切片的数字图像分析为神经病理学研究提供了可靠的高通量方法,但在额颞叶变性(FTLD)方面的数据却很少,由于其病理形态多样,给研究带来了额外的挑战。在此,我们描述了一种在FTLD亚型中进行半自动数字图像分析的新方法,这些亚型包括:具有tau阳性细胞内包涵体和神经毡丝的皮克病(PiD,n = 11),以及主要由大的营养不良性神经突中TDP - 43阳性聚集体定义的TDP - 43病理C型(FTLD - TDPC,n = 10)。为此,我们通过免疫组织化学检查了三个与FTLD相关的皮质区域:额中回(MFG)、颞上回(STG)和前扣带回(ACG)。我们使用颜色反卷积过程从色原中分离信号,并应用目标检测和强度阈值算法来量化病理负担。我们发现目标检测算法与tau和TDP - 43阳性包涵体的金标准手动定量有很好的一致性。我们的采样方法在三位独立研究者之间是可靠的,并且我们在使用开源软件的初步分析中获得了相似的结果。使用这些算法进行区域比较发现,PiD和FTLD - TDP之间的区域解剖疾病负担差异在使用传统序数尺度数据时未被检测到,这表明数字图像分析是形态多样的FTLD综合征临床病理研究的有力工具。

相似文献

引用本文的文献

9
Traumatic brain injury and the pathways to cerebral tau accumulation.创伤性脑损伤与脑内tau蛋白积累的途径
Front Neurol. 2023 Aug 11;14:1239653. doi: 10.3389/fneur.2023.1239653. eCollection 2023.

本文引用的文献

6
Staging TDP-43 pathology in Alzheimer's disease.阿尔茨海默病中 TDP-43 病理学分期。
Acta Neuropathol. 2014 Mar;127(3):441-50. doi: 10.1007/s00401-013-1211-9. Epub 2013 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验