Irwin David J, Byrne Matthew D, McMillan Corey T, Cooper Felicia, Arnold Steven E, Lee Edward B, Van Deerlin Vivianna M, Xie Sharon X, Lee Virginia M-Y, Grossman Murray, Trojanowski John Q
Penn Frontotemporal Degeneration Center, Department of Neurology (DJI, MDB, CTM, FC, MG)
Center for Neurodegenerative Disease Research,Department of Pathology & Laboratory Medicine(DJI, MDB, FC, SEA, EBL, VMVD, VML, JQT)
J Histochem Cytochem. 2016 Jan;64(1):54-66. doi: 10.1369/0022155415614303. Epub 2015 Nov 4.
Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes.
组织学切片的数字图像分析为神经病理学研究提供了可靠的高通量方法,但在额颞叶变性(FTLD)方面的数据却很少,由于其病理形态多样,给研究带来了额外的挑战。在此,我们描述了一种在FTLD亚型中进行半自动数字图像分析的新方法,这些亚型包括:具有tau阳性细胞内包涵体和神经毡丝的皮克病(PiD,n = 11),以及主要由大的营养不良性神经突中TDP - 43阳性聚集体定义的TDP - 43病理C型(FTLD - TDPC,n = 10)。为此,我们通过免疫组织化学检查了三个与FTLD相关的皮质区域:额中回(MFG)、颞上回(STG)和前扣带回(ACG)。我们使用颜色反卷积过程从色原中分离信号,并应用目标检测和强度阈值算法来量化病理负担。我们发现目标检测算法与tau和TDP - 43阳性包涵体的金标准手动定量有很好的一致性。我们的采样方法在三位独立研究者之间是可靠的,并且我们在使用开源软件的初步分析中获得了相似的结果。使用这些算法进行区域比较发现,PiD和FTLD - TDP之间的区域解剖疾病负担差异在使用传统序数尺度数据时未被检测到,这表明数字图像分析是形态多样的FTLD综合征临床病理研究的有力工具。