Suppr超能文献

索赔数据时代心血管健康结局研究:心血管健康研究

Study of Cardiovascular Health Outcomes in the Era of Claims Data: The Cardiovascular Health Study.

作者信息

Psaty Bruce M, Delaney Joseph A, Arnold Alice M, Curtis Lesley H, Fitzpatrick Annette L, Heckbert Susan R, McKnight Barbara, Ives Diane, Gottdiener John S, Kuller Lewis H, Longstreth W T

机构信息

From Cardiovascular Health Research Unit, Department of Medicine (B.M.P.), Department of Epidemiology (B.M.P., J.A.D., S.R.H.), Department of Health Services (B.M.P.), Department of Biostatistics (A.M.A., B.M.), Department of Global Health (A.L.F.), Department of Family Medicine (A.L.F.), and Department of Neurology (W.T.L.), University of Washington, Seattle; Group Health Research Institute, Group Health Cooperative, Seattle, WA (B.M.P., S.R.H.); Department of Medicine, Duke University, Durham, NC (L.H.C.); Department of Epidemiology, University of Pittsburgh, PA (D.I., L.H.K.); and Department of Medicine, University of Maryland, Baltimore (J.S.G.).

出版信息

Circulation. 2016 Jan 12;133(2):156-64. doi: 10.1161/CIRCULATIONAHA.115.018610. Epub 2015 Nov 4.

Abstract

BACKGROUND

Increasingly, the diagnostic codes from administrative claims data are being used as clinical outcomes.

METHODS AND RESULTS

Data from the Cardiovascular Health Study (CHS) were used to compare event rates and risk factor associations between adjudicated hospitalized cardiovascular events and claims-based methods of defining events. The outcomes of myocardial infarction (MI), stroke, and heart failure were defined in 3 ways: the CHS adjudicated event (CHS[adj]), selected International Classification of Diseases, Ninth Edition diagnostic codes only in the primary position for Medicare claims data from the Center for Medicare & Medicaid Services (CMS[1st]), and the same selected diagnostic codes in any position (CMS[any]). Conventional claims-based methods of defining events had high positive predictive values but low sensitivities. For instance, the positive predictive value of International Classification of Diseases, Ninth Edition code 410.x1 for a new acute MI in the first position was 90.6%, but this code identified only 53.8% of incident MIs. The observed event rates for CMS[1st] were low. For MI, the incidence was 14.9 events per 1000 person-years for CHS[adj] MI, 8.6 for CMS[1st] MI, and 12.2 for CMS[any] MI. In general, cardiovascular disease risk factor associations were similar across the 3 methods of defining events. Indeed, traditional cardiovascular disease risk factors were also associated with all first hospitalizations not resulting from an MI.

CONCLUSIONS

The use of diagnostic codes from claims data as clinical events, especially when restricted to primary diagnoses, leads to an underestimation of event rates. Additionally, claims-based events data represent a composite end point that includes the outcome of interest and selected (misclassified) nonevent hospitalizations.

摘要

背景

行政索赔数据中的诊断编码越来越多地被用作临床结局。

方法与结果

心血管健康研究(CHS)的数据用于比较经裁定的住院心血管事件与基于索赔的事件定义方法之间的事件发生率及危险因素关联。心肌梗死(MI)、中风和心力衰竭的结局通过三种方式定义:CHS裁定事件(CHS[adj])、仅选取医疗保险和医疗补助服务中心(CMS)医疗保险索赔数据主要位置的国际疾病分类第九版(ICD-9)诊断编码(CMS[1st])以及在任何位置的相同选定诊断编码(CMS[any])。传统的基于索赔的事件定义方法具有较高的阳性预测值,但敏感性较低。例如,主要位置的ICD-9编码410.x1对新发急性MI的阳性预测值为90.6%,但该编码仅识别出53.8%的新发MI。CMS[1st]观察到的事件发生率较低。对于MI,CHS[adj] MI的发病率为每1000人年14.9例事件,CMS[1st] MI为8.6例,CMS[any] MI为12.2例。总体而言,三种事件定义方法的心血管疾病危险因素关联相似。事实上,传统心血管疾病危险因素也与所有非MI导致的首次住院相关。

结论

将索赔数据中的诊断编码用作临床事件,尤其是仅限于主要诊断时,会导致事件发生率被低估。此外,基于索赔的事件数据代表了一个复合终点,包括感兴趣的结局和选定的(错误分类的)非事件住院情况。

相似文献

引用本文的文献

3
Left Bundle Branch Block as a Risk Factor for Heart Failure.左束支传导阻滞作为心力衰竭的一个危险因素。
JAMA Netw Open. 2025 Aug 1;8(8):e2525801. doi: 10.1001/jamanetworkopen.2025.25801.
7
Human Plasma Proteomic Profile of Clonal Hematopoiesis.克隆性造血的人血浆蛋白质组学图谱。
bioRxiv. 2024 Oct 31:2023.07.25.550557. doi: 10.1101/2023.07.25.550557.

本文引用的文献

5
Medicare at 50--origins and evolution.医疗保险五十载——起源与演变
N Engl J Med. 2015 Jan 29;372(5):479-86. doi: 10.1056/NEJMhpr1411701. Epub 2015 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验