Suppr超能文献

猕猴初级视皮层神经元反应的卷积亚单位模型

A Convolutional Subunit Model for Neuronal Responses in Macaque V1.

作者信息

Vintch Brett, Movshon J Anthony, Simoncelli Eero P

机构信息

Center for Neural Science.

Center for Neural Science, Courant Institute of Mathematical Sciences, and Howard Hughes Medical Institute, New York University, New York, New York 10003

出版信息

J Neurosci. 2015 Nov 4;35(44):14829-41. doi: 10.1523/JNEUROSCI.2815-13.2015.

Abstract

UNLABELLED

The response properties of neurons in the early stages of the visual system can be described using the rectified responses of a set of self-similar, spatially shifted linear filters. In macaque primary visual cortex (V1), simple cell responses can be captured with a single filter, whereas complex cells combine a set of filters, creating position invariance. These filters cannot be estimated using standard methods, such as spike-triggered averaging. Subspace methods like spike-triggered covariance can recover multiple filters but require substantial amounts of data, and recover an orthogonal basis for the subspace in which the filters reside, rather than the filters themselves. Here, we assume a linear-nonlinear-linear-nonlinear (LN-LN) cascade model in which the first LN stage consists of shifted ("convolutional") copies of a single filter, followed by a common instantaneous nonlinearity. We refer to these initial LN elements as the "subunits" of the receptive field, and we allow two independent sets of subunits, each with its own filter and nonlinearity. The second linear stage computes a weighted sum of the subunit responses and passes the result through a final instantaneous nonlinearity. We develop a procedure to directly fit this model to electrophysiological data. When fit to data from macaque V1, the subunit model significantly outperforms three alternatives in terms of cross-validated accuracy and efficiency, and provides a robust, biologically plausible account of receptive field structure for all cell types encountered in V1.

SIGNIFICANCE STATEMENT

We present a new subunit model for neurons in primary visual cortex that significantly outperforms three alternative models in terms of cross-validated accuracy and efficiency, and provides a robust and biologically plausible account of the receptive field structure in these neurons across the full spectrum of response properties.

摘要

未标注

视觉系统早期阶段神经元的反应特性可以用一组自相似、空间移位的线性滤波器的整流反应来描述。在猕猴初级视觉皮层(V1)中,简单细胞的反应可以用单个滤波器捕获,而复杂细胞则组合一组滤波器,产生位置不变性。这些滤波器不能用标准方法估计,如脉冲触发平均法。像脉冲触发协方差这样的子空间方法可以恢复多个滤波器,但需要大量数据,并且恢复的是滤波器所在子空间的正交基,而不是滤波器本身。在这里,我们假设一个线性-非线性-线性-非线性(LN-LN)级联模型,其中第一个LN阶段由单个滤波器的移位(“卷积”)副本组成,接着是一个共同的瞬时非线性。我们将这些初始LN元素称为感受野的“亚单位”,并且允许两组独立的亚单位,每组都有自己的滤波器和非线性。第二个线性阶段计算亚单位反应的加权和,并将结果通过最终的瞬时非线性。我们开发了一种程序,将该模型直接拟合到电生理数据。当拟合猕猴V1的数据时,亚单位模型在交叉验证的准确性和效率方面显著优于三种替代模型,并为V1中遇到的所有细胞类型的感受野结构提供了一个稳健的、生物学上合理的解释。

意义声明

我们提出了一种用于初级视觉皮层神经元的新亚单位模型,该模型在交叉验证的准确性和效率方面显著优于三种替代模型,并为这些神经元在整个反应特性范围内的感受野结构提供了一个稳健且生物学上合理的解释。

相似文献

3
Spatiotemporal elements of macaque v1 receptive fields.猕猴初级视皮层感受野的时空要素
Neuron. 2005 Jun 16;46(6):945-56. doi: 10.1016/j.neuron.2005.05.021.

引用本文的文献

1
Mapping the visual cortex with Zebra noise and wavelets.用斑马纹噪声和小波映射视觉皮层。
bioRxiv. 2025 Jul 23:2025.07.19.665666. doi: 10.1101/2025.07.19.665666.
10
Response sub-additivity and variability quenching in visual cortex.视觉皮层中的反应次加性和变异性淬火。
Nat Rev Neurosci. 2024 Apr;25(4):237-252. doi: 10.1038/s41583-024-00795-0. Epub 2024 Feb 19.

本文引用的文献

3
Identifying functional bases for multidimensional neural computations.识别多维神经计算的功能基础。
Neural Comput. 2013 Jul;25(7):1870-90. doi: 10.1162/NECO_a_00465. Epub 2013 Apr 22.
6
Receptive field inference with localized priors.基于局部先验的感受野推断。
PLoS Comput Biol. 2011 Oct;7(10):e1002219. doi: 10.1371/journal.pcbi.1002219. Epub 2011 Oct 27.
7
Metamers of the ventral stream.腹侧流的同型物。
Nat Neurosci. 2011 Aug 14;14(9):1195-201. doi: 10.1038/nn.2889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验