Nellen Nina S, Turishcheva Polina, Vystrčilová Michaela, Sridhar Shashwat, Gollisch Tim, Tolias Andreas S, Ecker Alexander S
Institute of Computer Science and Campus Institute Data Science, University Göttingen, Germany.
University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
ArXiv. 2025 Jun 3:arXiv:2506.03293v1.
Deep neural networks trained to predict neural activity from visual input and behaviour have shown great potential to serve as digital twins of the visual cortex. Per-neuron embeddings derived from these models could potentially be used to map the functional landscape or identify cell types. However, state-of-the-art predictive models of mouse V1 do not generate functional embeddings that exhibit clear clustering patterns which would correspond to cell types. This raises the question whether the lack of clustered structure is due to limitations of current models or a true feature of the functional organization of mouse V1. In this work, we introduce DECEMber - Deep Embedding Clustering via Expectation Maximization-based refinement - an explicit inductive bias into predictive models that enhances clustering by adding an auxiliary -distribution-inspired loss function that enforces structured organization among per-neuron embeddings. We jointly optimize both neuronal feature embeddings and clustering parameters, updating cluster centers and scale matrices using the EM-algorithm. We demonstrate that these modifications improve cluster consistency while preserving high predictive performance and surpassing standard clustering methods in terms of stability. Moreover, DECEMber generalizes well across species (mice, primates) and visual areas (retina, V1, V4). The code is available at https://github.com/Nisone2000/sensorium/tree/neuroips_version.
经过训练可从视觉输入和行为预测神经活动的深度神经网络,已显示出作为视觉皮层数字孪生体的巨大潜力。从这些模型中得出的每个神经元的嵌入可能可用于绘制功能图谱或识别细胞类型。然而,最先进的小鼠初级视觉皮层(V1)预测模型并未生成呈现出与细胞类型相对应的清晰聚类模式的功能嵌入。这就提出了一个问题,即缺乏聚类结构是由于当前模型的局限性,还是小鼠V1功能组织的一个真实特征。在这项工作中,我们引入了DECEMber——通过基于期望最大化的细化进行深度嵌入聚类——这是一种明确的归纳偏差,引入到预测模型中,通过添加一个受辅助分布启发的损失函数来增强聚类,该损失函数可在每个神经元的嵌入之间强制实现结构化组织。我们联合优化神经元特征嵌入和聚类参数,使用期望最大化算法(EM算法)更新聚类中心和尺度矩阵。我们证明,这些修改在保持高预测性能的同时提高了聚类一致性,并且在稳定性方面超过了标准聚类方法。此外,DECEMber在跨物种(小鼠、灵长类动物)和视觉区域(视网膜、V1、V4)方面具有良好的泛化能力。代码可在https://github.com/Nisone2000/sensorium/tree/neuroips_version获取。