Liu Mingxia, Zhang Daoqiang, Adeli Ehsan, Shen Dinggang
IEEE Trans Biomed Eng. 2016 Jul;63(7):1473-82. doi: 10.1109/TBME.2015.2496233. Epub 2015 Oct 30.
Multitemplate-based brain morphometric pattern analysis using magnetic resonance imaging has been recently proposed for automatic diagnosis of Alzheimer's disease (AD) and its prodromal stage (i.e., mild cognitive impairment or MCI). In such methods, multiview morphological patterns generated from multiple templates are used as feature representation for brain images. However, existing multitemplate-based methods often simply assume that each class is represented by a specific type of data distribution (i.e., a single cluster), while in reality, the underlying data distribution is actually not preknown. In this paper, we propose an inherent structure-based multiview leaning method using multiple templates for AD/MCI classification. Specifically, we first extract multiview feature representations for subjects using multiple selected templates and then cluster subjects within a specific class into several subclasses (i.e., clusters) in each view space. Then, we encode those subclasses with unique codes by considering both their original class information and their own distribution information, followed by a multitask feature selection model. Finally, we learn an ensemble of view-specific support vector machine classifiers based on their, respectively, selected features in each view and fuse their results to draw the final decision. Experimental results on the Alzheimer's Disease Neuroimaging Initiative database demonstrate that our method achieves promising results for AD/MCI classification, compared to the state-of-the-art multitemplate-based methods.
最近,基于磁共振成像的多模板脑形态计量模式分析被提出用于阿尔茨海默病(AD)及其前驱期(即轻度认知障碍或MCI)的自动诊断。在这类方法中,从多个模板生成的多视图形态模式被用作脑图像的特征表示。然而,现有的基于多模板的方法通常简单地假设每个类别由特定类型的数据分布(即单个聚类)表示,而实际上,潜在的数据分布是未知的。在本文中,我们提出了一种基于固有结构的多视图学习方法,使用多个模板进行AD/MCI分类。具体来说,我们首先使用多个选定的模板为受试者提取多视图特征表示,然后在每个视图空间中将特定类别的受试者聚类为几个子类(即聚类)。然后,我们通过考虑子类的原始类别信息和自身分布信息,用唯一编码对这些子类进行编码,接着使用多任务特征选择模型。最后,我们基于每个视图中分别选定的特征学习一个视图特定的支持向量机分类器集成,并融合它们的结果以做出最终决策。阿尔茨海默病神经影像倡议数据库的实验结果表明,与基于多模板的现有最先进方法相比,我们的方法在AD/MCI分类方面取得了有前景的结果。