Suppr超能文献

基于变形张量最小化的最佳个体模板选择

BEST INDIVIDUAL TEMPLATE SELECTION FROM DEFORMATION TENSOR MINIMIZATION.

作者信息

Leporé Natasha, Brun Caroline, Chou Yi-Yu, Lee Agatha D, Barysheva Marina, Pennec Xavier, McMahon Katie L, Meredith Matthew, de Zubicaray Greig I, Wright Margaret J, Toga Arthur W, Thompson Paul M

机构信息

Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA.

INRIA Sophia - Asclepios Project, Sophia Antipolis, France.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:460-463. doi: 10.1109/ISBI.2008.4541032. Epub 2008 Jun 13.

Abstract

We study the influence of the choice of template in tensor-based morphometry. Using 3D brain MR images from 10 monozygotic twin pairs, we defined a tensor-based distance in the log-Euclidean framework [1] between each image pair in the study. Relative to this metric, twin pairs were found to be closer to each other on average than random pairings, consistent with evidence that brain structure is under strong genetic control. We also computed the intraclass correlation and associated permutation -value at each voxel for the determinant of the Jacobian matrix of the transformation. The cumulative distribution function (cdf) of the -values was found at each voxel for each of the templates and compared to the null distribution. Surprisingly, there was very little difference between CDFs of statistics computed from analyses using different templates. As the brain with least log-Euclidean deformation cost, the mean template defined here avoids the blurring caused by creating a synthetic image from a population, and when selected from a large population, avoids bias by being geometrically centered, in a metric that is sensitive enough to anatomical similarity that it can even detect genetic affinity among anatomies.

摘要

我们研究了基于张量的形态测量中模板选择的影响。使用来自10对同卵双胞胎的3D脑部磁共振图像,我们在对数欧几里得框架[1]中定义了研究中每对图像之间基于张量的距离。相对于此度量,发现双胞胎对平均而言比随机配对彼此更接近,这与脑结构受强大遗传控制的证据一致。我们还计算了变换的雅可比矩阵行列式在每个体素处的组内相关性和相关的置换p值。针对每个模板在每个体素处找到p值的累积分布函数(cdf),并与零分布进行比较。令人惊讶的是,使用不同模板进行分析计算出的统计量的cdf之间差异很小。作为具有最小对数欧几里得变形成本的脑,这里定义的平均模板避免了从总体创建合成图像所导致的模糊,并且当从大量总体中选择时,通过在几何上居中而避免偏差,该度量对解剖相似性足够敏感,甚至可以检测解剖结构之间的遗传亲和力。

相似文献

1
BEST INDIVIDUAL TEMPLATE SELECTION FROM DEFORMATION TENSOR MINIMIZATION.
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:460-463. doi: 10.1109/ISBI.2008.4541032. Epub 2008 Jun 13.
2
Mean template for tensor-based morphometry using deformation tensors.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):826-33. doi: 10.1007/978-3-540-75759-7_100.
3
COMPARISON OF FRACTIONAL AND GEODESIC ANISOTROPY IN DIFFUSION TENSOR IMAGES OF 90 MONOZYGOTIC AND DIZYGOTIC TWINS.
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:943-946. doi: 10.1109/ISBI.2008.4541153. Epub 2008 Jun 13.
4
THE MULTIVARIATE A/C/E MODEL AND THE GENETICS OF FIBER ARCHITECTURE.
Proc IEEE Int Symp Biomed Imaging. 2009 Jun-Jul;2009:125-128. doi: 10.1109/ISBI.2009.5192999. Epub 2009 Aug 7.
5
A tensor-based morphometry study of genetic influences on brain structure using a new fluid registration method.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):914-21. doi: 10.1007/978-3-540-85990-1_110.
7
Anatomical MRI templates of tree shrew brain for volumetric analysis and voxel-based morphometry.
J Neurosci Methods. 2013 Oct 30;220(1):9-17. doi: 10.1016/j.jneumeth.2013.08.023. Epub 2013 Sep 4.
8
Intermediate templates guided groupwise registration of diffusion tensor images.
Neuroimage. 2011 Jan 15;54(2):928-39. doi: 10.1016/j.neuroimage.2010.09.019. Epub 2010 Sep 17.
9
A NEW REGISTRATION METHOD BASED ON LOG-EUCLIDEAN TENSOR METRICS AND ITS APPLICATION TO GENETIC STUDIES.
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:1115-1118. doi: 10.1109/ISBI.2008.4541196. Epub 2008 Jun 13.
10
Brain Differences Visualized in the Blind using Tensor Manifold Statistics and Diffusion Tensor Imaging.
Proc Front Converg Biosci Inf Technol (2007). 2007 Oct;2007:470-476. doi: 10.1109/FBIT.2007.52. Epub 2008 May 16.

引用本文的文献

1
Voxel-Based Statistical Analysis of 3D Immunostained Tissue Imaging.
Front Neurosci. 2018 Nov 15;12:754. doi: 10.3389/fnins.2018.00754. eCollection 2018.
2
Inherent Structure-Based Multiview Learning With Multitemplate Feature Representation for Alzheimer's Disease Diagnosis.
IEEE Trans Biomed Eng. 2016 Jul;63(7):1473-82. doi: 10.1109/TBME.2015.2496233. Epub 2015 Oct 30.
4
Directed graph based image registration.
Comput Med Imaging Graph. 2012 Mar;36(2):139-51. doi: 10.1016/j.compmedimag.2011.09.001. Epub 2011 Oct 19.
5
Brain structure changes visualized in early- and late-onset blind subjects.
Neuroimage. 2010 Jan 1;49(1):134-40. doi: 10.1016/j.neuroimage.2009.07.048. Epub 2009 Jul 28.
6
Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.
Neuroimage. 2009 Oct 15;48(1):37-49. doi: 10.1016/j.neuroimage.2009.05.022. Epub 2009 May 14.
8
A tensor-based morphometry study of genetic influences on brain structure using a new fluid registration method.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):914-21. doi: 10.1007/978-3-540-85990-1_110.
9
Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects.
Neuroimage. 2008 Nov 15;43(3):458-69. doi: 10.1016/j.neuroimage.2008.07.013. Epub 2008 Jul 22.

本文引用的文献

1
A NEW REGISTRATION METHOD BASED ON LOG-EUCLIDEAN TENSOR METRICS AND ITS APPLICATION TO GENETIC STUDIES.
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:1115-1118. doi: 10.1109/ISBI.2008.4541196. Epub 2008 Jun 13.
2
COMPARISON OF FRACTIONAL AND GEODESIC ANISOTROPY IN DIFFUSION TENSOR IMAGES OF 90 MONOZYGOTIC AND DIZYGOTIC TWINS.
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:943-946. doi: 10.1109/ISBI.2008.4541153. Epub 2008 Jun 13.
3
Fast 3D Fluid Registration of Brain Magnetic Resonance Images.
Proc SPIE Int Soc Opt Eng. 2008 Mar;6916. doi: 10.1117/12.774338.
4
Brain fiber architecture, genetics, and intelligence: a high angular resolution diffusion imaging (HARDI) study.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):1060-7. doi: 10.1007/978-3-540-85988-8_126.
5
Deformable templates using large deformation kinematics.
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
6
Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors.
IEEE Trans Med Imaging. 2008 Jan;27(1):129-41. doi: 10.1109/TMI.2007.906091.
7
Mean template for tensor-based morphometry using deformation tensors.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):826-33. doi: 10.1007/978-3-540-75759-7_100.
8
A fast diffeomorphic image registration algorithm.
Neuroimage. 2007 Oct 15;38(1):95-113. doi: 10.1016/j.neuroimage.2007.07.007. Epub 2007 Jul 18.
9
3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry.
Neuroimage. 2007 Jan 1;34(1):44-60. doi: 10.1016/j.neuroimage.2006.08.030. Epub 2006 Oct 10.
10
Log-Euclidean metrics for fast and simple calculus on diffusion tensors.
Magn Reson Med. 2006 Aug;56(2):411-21. doi: 10.1002/mrm.20965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验