College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
Sensors (Basel). 2022 Apr 11;22(8):2911. doi: 10.3390/s22082911.
Alzheimer's disease is the most common form of dementia and the fifth-leading cause of death among people over the age of 65. In addition, based on official records, cases of death from Alzheimer's disease have increased significantly. Hence, early diagnosis of Alzheimer's disease can increase patients' survival rates. Machine learning methods on magnetic resonance imaging have been used in the diagnosis of Alzheimer's disease to accelerate the diagnosis process and assist physicians. However, in conventional machine learning techniques, using handcrafted feature extraction methods on MRI images is complicated, requiring the involvement of an expert user. Therefore, implementing deep learning as an automatic feature extraction method could minimize the need for feature extraction and automate the process. In this study, we propose a pre-trained CNN deep learning model ResNet50 as an automatic feature extraction method for diagnosing Alzheimer's disease using MRI images. Then, the performance of a CNN with conventional Softmax, SVM, and RF evaluated using different metric measures such as accuracy. The result showed that our model outperformed other state-of-the-art models by achieving the higher accuracy, with an accuracy range of 85.7% to 99% for models with MRI ADNI dataset.
阿尔茨海默病是痴呆症最常见的形式,也是 65 岁以上人群的第五大死因。此外,根据官方记录,死于阿尔茨海默病的病例显著增加。因此,早期诊断阿尔茨海默病可以提高患者的生存率。磁共振成像上的机器学习方法已用于阿尔茨海默病的诊断,以加速诊断过程并协助医生。然而,在传统的机器学习技术中,在 MRI 图像上使用手工制作的特征提取方法很复杂,需要专家用户的参与。因此,实现深度学习作为自动特征提取方法可以最大限度地减少特征提取的需求并实现自动化过程。在这项研究中,我们提出了一种预先训练的卷积神经网络深度学习模型 ResNet50,作为使用 MRI 图像诊断阿尔茨海默病的自动特征提取方法。然后,使用不同的度量标准(如准确性)评估具有传统 Softmax、SVM 和 RF 的 CNN 的性能。结果表明,我们的模型通过实现更高的准确性,超过了其他最先进的模型,在具有 MRI ADNI 数据集的模型中,准确性范围为 85.7%至 99%。