Suppr超能文献

基于水凝胶配体陷阱的微流控共培养物用于研究引发癌症药物耐药性的旁分泌信号。

Microfluidic co-cultures with hydrogel-based ligand trap to study paracrine signals giving rise to cancer drug resistance.

机构信息

Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95618, USA.

出版信息

Lab Chip. 2015 Dec 21;15(24):4614-24. doi: 10.1039/c5lc00948k. Epub 2015 Nov 6.

Abstract

Targeted cancer therapies are designed to deactivate signaling pathways used by cancer cells for survival. However, cancer cells are often able to adapt by activating alternative survival pathways, thereby acquiring drug resistance. An emerging theory is that autocrine or paracrine growth factor signaling in the cancer microenvironment represent an important mechanism of drug resistance. In the present study we wanted to examine whether paracrine interactions between groups of melanoma cells result in resistance to vemurafenib - an FDA approved drug targeting the BRAF mutation in metastatic melanoma. We used a vemurafenib-resistant melanoma model which secretes fibroblast growth factor (FGF)-2 to test our hypothesis that this is a key paracrine mediator of resistance to vemurafenib. Sensitive cells treated with media conditioned by resistant cells did not protect from the effects of vemurafenib. To query paracrine interactions further we fabricated a microfluidic co-culture device with two parallel compartments, separated by a 100 μm wide hydrogel barrier. The gel barrier prevented resorting/contact of cells while permitting paracrine cross-talk. In this microfluidic system, sensitive cells did become refractive to the effects of vemurafenib when cultured adjacent to resistant cells. Importantly, incorporation of FGF-2 capture probes into the gel barrier separating the two cell types prevented onset of resistance to vemurafenib. Microfluidic tools described here allow for more sensitive analysis of paracrine signals, may help better understand signaling in the cancer microenvironment and may enable development of more effective cancer therapies.

摘要

靶向癌症疗法旨在使癌细胞用于存活的信号通路失活。然而,癌细胞经常能够通过激活替代存活途径来适应,从而获得耐药性。一个新兴的理论是,癌症微环境中的自分泌或旁分泌生长因子信号代表了耐药性的重要机制。在本研究中,我们想研究黑色素瘤细胞群之间的旁分泌相互作用是否导致对vemurafenib(一种针对转移性黑色素瘤中 BRAF 突变的 FDA 批准药物)的耐药性。我们使用vemurafenib 耐药性黑色素瘤模型,该模型分泌成纤维细胞生长因子(FGF)-2,以检验我们的假设,即这是对 vemurafenib 耐药性的关键旁分泌介质。用耐药细胞条件培养基处理的敏感细胞不能防止vemurafenib 的作用。为了进一步探究旁分泌相互作用,我们用两个平行的隔室制造了一个微流控共培养装置,通过 100μm 宽的水凝胶屏障将它们隔开。凝胶屏障防止细胞重新附着/接触,同时允许旁分泌串扰。在这种微流控系统中,当敏感细胞与耐药细胞相邻培养时,它们对 vemurafenib 的作用变得不易察觉。重要的是,将 FGF-2 捕获探针掺入将两种细胞类型隔开的凝胶屏障中,可防止vemurafenib 耐药性的发生。这里描述的微流控工具可以更灵敏地分析旁分泌信号,可能有助于更好地理解癌症微环境中的信号转导,并可能有助于开发更有效的癌症疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验