Medeiros David B, Martins Samuel C V, Cavalcanti João Henrique F, Daloso Danilo M, Martinoia Enrico, Nunes-Nesi Adriano, DaMatta Fábio M, Fernie Alisdair R, Araújo Wagner L
Departamento de Biologia Vegetal (D.B.M., S.C.V.M, J.H.F.C., A.N.-N., F.M.D., W.L.A.) and Max-Planck Partner Group at the Departamento de Biologia Vegetal (D.B.M., J.H.F.C., A.N.-N., W.L.A.), Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil;Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (D.M.D., A.R.F.); andInstitute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland (E.M.).
Departamento de Biologia Vegetal (D.B.M., S.C.V.M, J.H.F.C., A.N.-N., F.M.D., W.L.A.) and Max-Planck Partner Group at the Departamento de Biologia Vegetal (D.B.M., J.H.F.C., A.N.-N., W.L.A.), Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil;Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (D.M.D., A.R.F.); andInstitute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland (E.M.)
Plant Physiol. 2016 Jan;170(1):86-101. doi: 10.1104/pp.15.01053. Epub 2015 Nov 5.
Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions.
气孔控制着陆生植物中二氧化碳和水蒸气的交换。因此,虽然需要持续供应二氧化碳以维持足够的光合作用速率,但必须严格调节随之而来的水分流失,以防止脱水和不必要的代谢变化。相应地,从保卫细胞摄取或释放离子和代谢物对于实现正常的气孔功能是必要的。AtQUAC1是一种负责从保卫细胞释放苹果酸的R型阴离子通道,对有效的气孔关闭至关重要。在这里,我们证明缺乏AtQUAC1的突变植物积累了更高水平的苹果酸和富马酸。这些突变植物不仅在二氧化碳浓度增加和黑暗条件下气孔关闭较慢,而且其特点是叶肉导度提高。这些反应伴随着光合作用和呼吸速率的增加,而不影响光合和呼吸酶的活性以及保卫细胞中其他转运蛋白基因的表达,最终导致生长改善。总的来说,我们的结果突出了有机酸的运输在植物细胞代谢中起关键作用,并表明AtQUAC1减少了对光合作用的扩散限制,这至少部分解释了在水分充足条件下观察到的生长增加。