Suppr超能文献

热应激下控制细胞裂解的机制及稳定期的细胞存活策略

Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress.

作者信息

Noor Rashed

机构信息

Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh.

出版信息

Springerplus. 2015 Oct 13;4:599. doi: 10.1186/s40064-015-1415-7. eCollection 2015.

Abstract

An array of stress signals triggering the bacterial cellular stress response is well known in Escherichia coli and other bacteria. Heat stress is usually sensed through the misfolded outer membrane porin (OMP) precursors in the periplasm, resulting in the activation of σ(E) (encoded by rpoE), which binds to RNA polymerase to start the transcription of genes required for responding against the heat stress signal. At the elevated temperatures, σ(E) also serves as the transcription factor for σ(H) (the main heat shock sigma factor, encoded by rpoH), which is involved in the expression of several genes whose products deal with the cytoplasmic unfolded proteins. Besides, oxidative stress in form of the reactive oxygen species (ROS) that accumulate due to heat stress, has been found to give rise to viable but non-culturable (VBNC) cells at the early stationary phase, which is in turn lysed by the σ(E)-dependent process. Such lysis of the defective cells may generate nutrients for the remaining population to survive with the capacity of formation of colony forming units (CFUs). σ(H) is also known to regulate the transcription of the major heat shock proteins (HSPs) required for heat shock response (HSR) resulting in cellular survival. Present review concentrated on the cellular survival against heat stress employing the harmonized impact of σ(E) and σ(H) regulons and the HSPs as well as their inter connectivity towards the maintenance of cellular survival.

摘要

一系列触发细菌细胞应激反应的应激信号在大肠杆菌和其他细菌中是众所周知的。热应激通常通过周质中错误折叠的外膜孔蛋白(OMP)前体来感知,从而导致σ(E)(由rpoE编码)的激活,σ(E)与RNA聚合酶结合以启动应对热应激信号所需基因的转录。在高温下,σ(E)还作为σ(H)(主要的热休克西格玛因子,由rpoH编码)的转录因子,σ(H)参与几种基因的表达,其产物处理细胞质中未折叠的蛋白质。此外,已发现由于热应激而积累的活性氧(ROS)形式的氧化应激在早期稳定期产生活的但不可培养(VBNC)细胞,这些细胞又通过σ(E)依赖性过程被裂解。有缺陷细胞的这种裂解可能为其余群体产生营养物质,使其能够以形成菌落形成单位(CFU)的能力存活。已知σ(H)还调节热休克反应(HSR)所需的主要热休克蛋白(HSP)的转录,从而导致细胞存活。本综述集中于利用σ(E)和σ(H)调控子以及HSP的协调作用及其对维持细胞存活的相互连接来实现细胞对热应激的存活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5006/4627973/a97856f9fedc/40064_2015_1415_Fig1_HTML.jpg

相似文献

1
Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress.
Springerplus. 2015 Oct 13;4:599. doi: 10.1186/s40064-015-1415-7. eCollection 2015.
2
Oxidative stress as a trigger for growth phase-specific sigmaE-dependent cell lysis in Escherichia coli.
J Mol Microbiol Biotechnol. 2009;17(4):177-87. doi: 10.1159/000236029. Epub 2009 Sep 2.
3
[Genetic regulation of the heat-shock response in Escherichia coli].
Rev Latinoam Microbiol. 2001 Jan-Mar;43(1):51-63.
4
Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
Exp Physiol. 2006 Sep;91(5):867-75. doi: 10.1113/expphysiol.2006.033365. Epub 2006 May 25.
5
Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.
Mol Microbiol. 1999 Dec;34(5):1029-38. doi: 10.1046/j.1365-2958.1999.01664.x.
6
Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins.
J Mol Biol. 2006 Nov 17;364(1):1-8. doi: 10.1016/j.jmb.2006.09.004. Epub 2006 Sep 8.
7
New envelope stress factors involved in σ activation and conditional lethality of rpoE mutations in Salmonella enterica.
Microbiology (Reading). 2018 Oct;164(10):1293-1307. doi: 10.1099/mic.0.000701. Epub 2018 Aug 6.

引用本文的文献

1
Intracellular ATP concentration is a key regulator of bacterial cell fate.
J Bacteriol. 2024 Dec 19;206(12):e0020824. doi: 10.1128/jb.00208-24. Epub 2024 Nov 12.
2
5
Oxygen Restriction Generates Difficult-to-Culture .
Front Microbiol. 2019 Aug 29;10:1992. doi: 10.3389/fmicb.2019.01992. eCollection 2019.
10
Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria.
PLoS One. 2017 Feb 6;12(2):e0171434. doi: 10.1371/journal.pone.0171434. eCollection 2017.

本文引用的文献

3
Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution.
Biomolecules. 2015 Jun 26;5(3):1245-65. doi: 10.3390/biom5031245.
4
Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron.
J Biol Chem. 2015 Jul 31;290(31):19367-78. doi: 10.1074/jbc.M115.648550. Epub 2015 Jun 19.
5
Small heat-shock proteins, IbpAB, protect non-pathogenic Escherichia coli from killing by macrophage-derived reactive oxygen species.
PLoS One. 2015 Mar 23;10(3):e0120249. doi: 10.1371/journal.pone.0120249. eCollection 2015.
6
Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation.
Curr Opin Struct Biol. 2015 Feb;30:71-78. doi: 10.1016/j.sbi.2015.01.006. Epub 2015 Feb 9.
7
Structural model of an mRNA in complex with the bacterial chaperone Hfq.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17134-9. doi: 10.1073/pnas.1410114111. Epub 2014 Nov 17.
9
Conformational adaptation in the E. coli sigma 32 protein in response to heat shock.
J Phys Chem B. 2014 May 8;118(18):4793-802. doi: 10.1021/jp501272n. Epub 2014 Apr 25.
10
Molecular chaperone GroEL/ES: unfolding and refolding processes.
Biochemistry (Mosc). 2013 Dec;78(13):1405-14. doi: 10.1134/S0006297913130038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验