Carron Clémence, Shi De-Li
Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.
School of Life Sciences, Shandong University, Jinan, China.
Wiley Interdiscip Rev Dev Biol. 2016 Mar-Apr;5(2):150-68. doi: 10.1002/wdev.217. Epub 2015 Nov 6.
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
前后轴(AP)的特化是一个基本且复杂的模式形成过程,它确立了胚胎极性并塑造了多细胞生物体。这个过程涉及不同信号通路的整合,以协调时空基因表达和形态发生运动。在非洲爪蟾中,广泛的胚胎学和分子研究在理解AP模式形成所涉及的机制方面取得了重大进展。受精后,皮层旋转导致母体决定因子运输到背侧区域,并产生初级背腹(DV)不对称性。母体Wnt/β-连环蛋白信号的激活和高Nodal信号诱导背侧植物细胞中Nieuwkoop中心的形成,然后触发上覆背侧边缘区中Spemann组织者的形成。现在已经明确,Spemann组织者在构建脊椎动物体轴中起着核心作用,因为它为DV和AP极性提供模式形成信息。Spemann组织者和相对的腹侧区域分泌的信号之间的拮抗相互作用沿DV轴对中胚层进行模式化,并且这种DV信息在原肠胚形成期间被转化为AP位置值。前神经组织的形成需要同时抑制合子Wnt和骨形态发生蛋白(BMP)信号,而Wnt、成纤维细胞生长因子(FGFs)、视黄酸(RA)信号的内源性梯度以及共线性表达的Hox基因对躯干和后部区域进行模式化。总的来说,DV不对称性大多与AP极性相关联,并且基本上由相同调节网络介导的细胞间相互作用在DV和AP模式形成中起作用。有关本文的更多资源,请访问WIREs网站。