Halim Mohammad A, Girod Marion, MacAleese Luke, Lemoine Jérôme, Antoine Rodolphe, Dugourd Philippe
Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.
Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.
J Am Soc Mass Spectrom. 2016 Mar;27(3):474-86. doi: 10.1007/s13361-015-1297-5. Epub 2015 Nov 6.
Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.
由于缺乏合适的分析技术,酸性肽和蛋白质的表征受到极大阻碍。在此,我们展示了在高分辨率四极杆-轨道阱质谱仪中以负极性对肽阴离子实施213 nm紫外光解离(UVPD)。自由基驱动的主链碎片化提供了22种独特的碎片离子类型,实现了对所有已报道肽段的完整序列覆盖。缺氢自由基阴离子不仅促进Cα-C键的断裂,还刺激N-Cα和C-N键的断裂。在这些实验中检测到了自由基导向的小分子丢失和氨基酸特定侧链的丢失。含氨基酸侧链(酪氨酸、丝氨酸、苏氨酸和天冬氨酸)的自由基可能支持N-Cα主链的碎片化。含脯氨酸的肽段表现出与先前报道相似的异常碎片离子。有趣的是,碱性氨基酸如精氨酸和赖氨酸也刺激了相关肽阴离子产生大量的b离子和y离子。通过含时密度泛函理论(TDDFT)计算,确定了模型酰胺体系的ππ和排斥性πσ激发态的势能面(PES),从而解释了电荷减少的自由基阴离子和碎片离子的氢原子丢失。