Suppr超能文献

翻译后修饰肽的紫外、红外及高低能光解离

Ultraviolet, Infrared, and High-Low Energy Photodissociation of Post-Translationally Modified Peptides.

机构信息

Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.

Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon, 69622, Villeurbanne, Cedex, France.

出版信息

J Am Soc Mass Spectrom. 2018 Feb;29(2):270-283. doi: 10.1007/s13361-017-1794-9. Epub 2017 Oct 4.

Abstract

Mass spectrometry-based methods have made significant progress in characterizing post-translational modifications in peptides and proteins; however, certain aspects regarding fragmentation methods must still be improved. A good technique is expected to provide excellent sequence information, locate PTM sites, and retain the labile PTM groups. To address these issues, we investigate 10.6 μm IRMPD, 213 nm UVPD, and combined UV and IR photodissociation, known as HiLoPD (high-low photodissociation), for phospho-, sulfo-, and glyco-peptide cations. IRMPD shows excellent backbone fragmentation and produces equal numbers of N- and C-terminal ions. The results reveal that 213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing a/x, b/y, and c/z ions with excellent sequence coverage, locate PTM sites, and offer reasonable retention efficiency for phospho- and glyco-peptides. Excellent sequence coverage is achieved for sulfo-peptides and the position of the SO group can be pinpointed; however, widespread SO losses are detected irrespective of the methods used herein. Based on the overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as alternative options to collision activation and electron transfer dissociations for phospho- and glyco-proteomics. Graphical Abstract ᅟ.

摘要

基于质谱的方法在表征肽和蛋白质的翻译后修饰方面取得了显著进展;然而,关于碎片化方法的某些方面仍需改进。一种好的技术应能提供出色的序列信息、定位翻译后修饰位点并保留不稳定的翻译后修饰基团。为了解决这些问题,我们研究了10.6μm红外多光子解离(IRMPD)、213nm紫外光解离(UVPD)以及结合紫外和红外光解离的方法,即高低光解离(HiLoPD),用于磷酸化、磺化和糖基化肽阳离子。IRMPD显示出出色的主链碎片化,并产生数量相等的N端和C端离子。结果表明,213nm UVPD和HiLoPD方法可提供多样化的主链碎片化,产生具有出色序列覆盖率的a/x、b/y和c/z离子,定位翻译后修饰位点,并为磷酸化和糖基化肽提供合理的保留效率。磺化肽实现了出色的序列覆盖率,并且可以精确确定SO基团的位置;然而,无论本文使用何种方法,均检测到广泛的SO损失。基于所取得的整体性能,我们认为213nm UVPD和HiLoPD可作为磷酸化和糖基化蛋白质组学中碰撞激活和电子转移解离的替代选择。图形摘要ᅟ。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验