Suppr超能文献

用于整合基因组分析的分层模型评估。

Evaluation of hierarchical models for integrative genomic analyses.

作者信息

Denis Marie, Tadesse Mahlet G

机构信息

UMR AGAP, CIRAD, Montpellier, France, Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA and.

Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA.

出版信息

Bioinformatics. 2016 Mar 1;32(5):738-46. doi: 10.1093/bioinformatics/btv653. Epub 2015 Nov 5.

Abstract

MOTIVATION

Advances in high-throughput technologies have led to the acquisition of various types of -omic data on the same biological samples. Each data type gives independent and complementary information that can explain the biological mechanisms of interest. While several studies performing independent analyses of each dataset have led to significant results, a better understanding of complex biological mechanisms requires an integrative analysis of different sources of data.

RESULTS

Flexible modeling approaches, based on penalized likelihood methods and expectation-maximization (EM) algorithms, are studied and tested under various biological relationship scenarios between the different molecular features and their effects on a clinical outcome. The models are applied to genomic datasets from two cancer types in the Cancer Genome Atlas project: glioblastoma multiforme and ovarian serous cystadenocarcinoma. The integrative models lead to improved model fit and predictive performance. They also provide a better understanding of the biological mechanisms underlying patients' survival.

AVAILABILITY AND IMPLEMENTATION

Source code implementing the integrative models is freely available at https://github.com/mgt000/IntegrativeAnalysis along with example datasets and sample R script applying the models to these data. The TCGA datasets used for analysis are publicly available at https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp

CONTACT

marie.denis@cirad.fr or mgt26@georgetown.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

高通量技术的进步使得能够在相同生物样本上获取各种类型的组学数据。每种数据类型都提供独立且互补的信息,这些信息能够解释所关注的生物学机制。虽然多项对每个数据集进行独立分析的研究都取得了显著成果,但要更好地理解复杂的生物学机制,需要对不同数据源进行综合分析。

结果

基于惩罚似然方法和期望最大化(EM)算法的灵活建模方法,在不同分子特征之间的各种生物学关系场景及其对临床结局的影响下进行了研究和测试。这些模型应用于癌症基因组图谱项目中两种癌症类型的基因组数据集:多形性胶质母细胞瘤和卵巢浆液性囊腺癌。综合模型提高了模型拟合度和预测性能。它们还能更好地理解患者生存背后的生物学机制。

可用性与实现

实现综合模型的源代码可在https://github.com/mgt000/IntegrativeAnalysis免费获取,同时还提供示例数据集以及将模型应用于这些数据的示例R脚本。用于分析的TCGA数据集可在https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp公开获取。

联系方式

marie.denis@cirad.frmgt26@georgetown.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
Evaluation of hierarchical models for integrative genomic analyses.用于整合基因组分析的分层模型评估。
Bioinformatics. 2016 Mar 1;32(5):738-46. doi: 10.1093/bioinformatics/btv653. Epub 2015 Nov 5.
3
Integrative cancer patient stratification via subspace merging.基于子空间合并的癌症患者综合分层。
Bioinformatics. 2019 May 15;35(10):1653-1659. doi: 10.1093/bioinformatics/bty866.
8
InterSIM: Simulation tool for multiple integrative 'omic datasets'.InterSIM:用于多个综合“组学”数据集的模拟工具。
Comput Methods Programs Biomed. 2016 May;128:69-74. doi: 10.1016/j.cmpb.2016.02.011. Epub 2016 Feb 27.

本文引用的文献

3
Systems genetics approaches to understand complex traits.系统遗传学方法研究复杂性状。
Nat Rev Genet. 2014 Jan;15(1):34-48. doi: 10.1038/nrg3575. Epub 2013 Dec 3.
8
Integrating diverse genomic data using gene sets.利用基因集整合多种基因组数据。
Genome Biol. 2011 Oct 21;12(10):R105. doi: 10.1186/gb-2011-12-10-r105.
9
Integrated genomic analyses of ovarian carcinoma.卵巢癌的综合基因组分析。
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验