Suppr超能文献

ScreenBEAM:一种通过贝叶斯层次模型进行功能基因组筛选的新型荟萃分析算法。

ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.

作者信息

Yu Jiyang, Silva Jose, Califano Andrea

机构信息

Department of Biomedical Informatics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA and.

Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Bioinformatics. 2016 Jan 15;32(2):260-7. doi: 10.1093/bioinformatics/btv556. Epub 2015 Sep 28.

Abstract

MOTIVATION

Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library.

METHOD

We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM).

RESULTS

Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets.

AVAILABILITY AND IMPLEMENTATION

R package and source code are available at: https://github.com/jyyu/ScreenBEAM.

CONTACT

ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

利用RNA干扰或CRISPR技术进行的功能基因组学(FG)筛选,已成为用于治疗靶点发现的全基因组范围内系统性功能丧失研究的标准工具。然而,与许多大规模检测一样,脱靶效应、试剂效力的差异以及实验噪声都必须得到妥善处理,以控制假阳性结果。实际上,对高通量FG筛选数据进行严格的统计分析仍然具有挑战性,尤其是当使用整合分析来合并文库中针对同一基因的多个短发夹RNA/单向导RNA时。

方法

我们使用公开可用的大型RNA干扰和CRISPR文库,通过贝叶斯分层建模(筛选贝叶斯评估与分析方法,即ScreenBEAM)来评估一种用于FG筛选的新型荟萃分析方法。

结果

我们的分析结果表明,所提出的策略能无缝整合所有可用数据,其性能稳健地优于为微阵列数据集开发的经典算法以及为新一代测序技术设计的最新方法。值得注意的是,即使FG筛选质量相对较低(约占公共数据集的80 - 95%),ScreenBEAM算法也能很好地发挥作用。

可用性与实现方式

R包和源代码可在以下网址获取:https://github.com/jyyu/ScreenBEAM。

联系方式

ac2248@columbia.edujose.silva@mssm.eduyujiyang@gmail.com

补充信息

补充数据可在《生物信息学》在线版获取。

相似文献

7

引用本文的文献

9
Computational Tools and Resources for CRISPR/Cas Genome Editing.CRISPR/Cas 基因组编辑的计算工具和资源。
Genomics Proteomics Bioinformatics. 2023 Feb;21(1):108-126. doi: 10.1016/j.gpb.2022.02.006. Epub 2022 Mar 24.

本文引用的文献

10
Genetic screens in human cells using the CRISPR-Cas9 system.利用 CRISPR-Cas9 系统在人类细胞中进行遗传筛选。
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验