Yu Jiyang, Silva Jose, Califano Andrea
Department of Biomedical Informatics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA and.
Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Bioinformatics. 2016 Jan 15;32(2):260-7. doi: 10.1093/bioinformatics/btv556. Epub 2015 Sep 28.
Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library.
We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM).
Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets.
R package and source code are available at: https://github.com/jyyu/ScreenBEAM.
ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com
Supplementary data are available at Bioinformatics online.
利用RNA干扰或CRISPR技术进行的功能基因组学(FG)筛选,已成为用于治疗靶点发现的全基因组范围内系统性功能丧失研究的标准工具。然而,与许多大规模检测一样,脱靶效应、试剂效力的差异以及实验噪声都必须得到妥善处理,以控制假阳性结果。实际上,对高通量FG筛选数据进行严格的统计分析仍然具有挑战性,尤其是当使用整合分析来合并文库中针对同一基因的多个短发夹RNA/单向导RNA时。
我们使用公开可用的大型RNA干扰和CRISPR文库,通过贝叶斯分层建模(筛选贝叶斯评估与分析方法,即ScreenBEAM)来评估一种用于FG筛选的新型荟萃分析方法。
我们的分析结果表明,所提出的策略能无缝整合所有可用数据,其性能稳健地优于为微阵列数据集开发的经典算法以及为新一代测序技术设计的最新方法。值得注意的是,即使FG筛选质量相对较低(约占公共数据集的80 - 95%),ScreenBEAM算法也能很好地发挥作用。
R包和源代码可在以下网址获取:https://github.com/jyyu/ScreenBEAM。
ac2248@columbia.edu,jose.silva@mssm.edu,yujiyang@gmail.com
补充数据可在《生物信息学》在线版获取。