文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

血脂异常的分子生物学进展

Update on the molecular biology of dyslipidemias.

作者信息

Ramasamy I

机构信息

Department of Biochemistry, Worcester Royal Hospital, Worcester, United Kingdom.

出版信息

Clin Chim Acta. 2016 Feb 15;454:143-85. doi: 10.1016/j.cca.2015.10.033. Epub 2015 Nov 4.


DOI:10.1016/j.cca.2015.10.033
PMID:26546829
Abstract

Dyslipidemia is a commonly encountered clinical condition and is an important determinant of cardiovascular disease. Although secondary factors play a role in clinical expression, dyslipidemias have a strong genetic component. Familial hypercholesterolemia is usually due to loss-of-function mutations in LDLR, the gene coding for low density lipoprotein receptor and genes encoding for proteins that interact with the receptor: APOB, PCSK9 and LDLRAP1. Monogenic hypertriglyceridemia is the result of mutations in genes that regulate the metabolism of triglyceride rich lipoproteins (eg LPL, APOC2, APOA5, LMF1, GPIHBP1). Conversely familial hypobetalipoproteinemia is caused by inactivation of the PCSK9 gene which increases the number of LDL receptors and decreases plasma cholesterol. Mutations in the genes APOB, and ANGPTL3 and ANGPTL4 (that encode angiopoietin-like proteins which inhibit lipoprotein lipase activity) can further cause low levels of apoB containing lipoproteins. Abetalipoproteinemia and chylomicron retention disease are due to mutations in the microsomal transfer protein and Sar1b-GTPase genes, which affect the secretion of apoB containing lipoproteins. Dysbetalipoproteinemia stems from dysfunctional apoE and is characterized by the accumulation of remnants of chylomicrons and very low density lipoproteins. ApoE deficiency can cause a similar phenotype or rarely mutations in apoE can be associated with lipoprotein glomerulopathy. Low HDL can result from mutations in a number of genes regulating HDL production or catabolism; apoAI, lecithin: cholesterol acyltransferase and the ATP-binding cassette transporter ABCA1. Patients with cholesteryl ester transfer protein deficiency have markedly increased HDL cholesterol. Both common and rare genetic variants contribute to susceptibility to dyslipidemias. In contrast to rare familial syndromes, in most patients, dyslipidemias have a complex genetic etiology consisting of multiple genetic variants as established by genome wide association studies. Secondary factors, obesity, metabolic syndrome, diabetes, renal disease, estrogen and antipsychotics can increase the likelihood of clinical presentation of an individual with predisposed genetic susceptibility to hyperlipoproteinemia. The genetic profiles studied are far from complete and there is room for further characterization of genes influencing lipid levels. Genetic assessment can help identify patients at risk for developing dyslipidemias and for treatment decisions based on 'risk allele' profiles. This review will present the current information on the genetics and pathophysiology of disorders that cause dyslipidemias.

摘要

血脂异常是一种常见的临床病症,是心血管疾病的重要决定因素。尽管继发性因素在临床表现中起作用,但血脂异常具有很强的遗传成分。家族性高胆固醇血症通常是由于低密度脂蛋白受体(LDLR)功能丧失突变所致,LDLR是编码低密度脂蛋白受体的基因,以及编码与该受体相互作用的蛋白质的基因:载脂蛋白B(APOB)、前蛋白转化酶枯草溶菌素9(PCSK9)和低密度脂蛋白受体相关蛋白1(LDLRAP1)。单基因高甘油三酯血症是调节富含甘油三酯脂蛋白代谢的基因突变的结果(例如脂蛋白脂肪酶(LPL)、载脂蛋白C2(APOC2)、载脂蛋白A5(APOA5)、脂酶成熟因子1(LMF1)、糖基磷脂酰肌醇锚定高密度脂蛋白结合蛋白1(GPIHBP1))。相反,家族性低β脂蛋白血症是由PCSK9基因失活引起的,该基因增加了低密度脂蛋白受体的数量并降低了血浆胆固醇。载脂蛋白B、血管生成素样蛋白3(ANGPTL3)和血管生成素样蛋白4(ANGPTL4)(编码抑制脂蛋白脂肪酶活性的血管生成素样蛋白)基因的突变可进一步导致含载脂蛋白B的脂蛋白水平降低。无β脂蛋白血症和乳糜微粒滞留病是由于微粒体转移蛋白和Sar1b - GTP酶基因突变所致,这些突变影响含载脂蛋白B的脂蛋白的分泌。异常β脂蛋白血症源于载脂蛋白E功能失调,其特征是乳糜微粒和极低密度脂蛋白残粒的积累。载脂蛋白E缺乏可导致类似的表型,或者载脂蛋白E的突变很少与脂蛋白肾小球病相关。低高密度脂蛋白(HDL)可能是由于调节HDL产生或分解代谢的多个基因突变所致;载脂蛋白AI(apoAI)、卵磷脂胆固醇酰基转移酶和ATP结合盒转运体ABCA1。胆固醇酯转运蛋白缺乏的患者HDL胆固醇显著升高。常见和罕见的基因变异均会导致血脂异常易感性增加。与罕见的家族综合征不同,在大多数患者中,血脂异常具有复杂的遗传病因,由全基因组关联研究确定的多个基因变异组成。继发性因素,如肥胖、代谢综合征、糖尿病、肾脏疾病、雌激素和抗精神病药物,可增加具有高脂血症遗传易感性个体出现临床表现的可能性。所研究的基因图谱远未完整,仍有进一步鉴定影响血脂水平基因的空间。基因评估有助于识别有发生血脂异常风险的患者,并基于“风险等位基因”图谱进行治疗决策。本综述将介绍目前关于导致血脂异常疾病的遗传学和病理生理学的信息。

相似文献

[1]
Update on the molecular biology of dyslipidemias.

Clin Chim Acta. 2016-2-15

[2]
Genetics and Dyslipidemia

2000

[3]
APOE gene variants in primary dyslipidemia.

Atherosclerosis. 2021-7

[4]
Recent advances in physiological lipoprotein metabolism.

Clin Chem Lab Med. 2014-12

[5]
Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia.

Pharmacol Res. 2020-3

[6]
Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3.

Circ Cardiovasc Genet. 2012-2-1

[7]
Pitavastatin: novel effects on lipid parameters.

Atheroscler Suppl. 2011-11

[8]
The molecular genetic basis and diagnosis of familial hypercholesterolemia in Denmark.

Dan Med Bull. 2002-11

[9]
Clinical and biochemical features of different molecular etiologies of familial chylomicronemia.

J Clin Lipidol. 2018-4-4

[10]
Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: Evidence supporting polygenicity in mutation-negative patients.

Atherosclerosis. 2019-2-11

引用本文的文献

[1]
Assessment of Pediatric Hypertriglyceridemia Etiology: Insights from Next-Generation Sequencing Panels and Identification of Novel Variants.

Biochem Genet. 2025-8-7

[2]
Lipid disturbances induced by psychotropic drugs: clinical and genetic predictors for early worsening of lipid levels and new-onset dyslipidaemia in Swiss psychiatric samples.

BJPsych Open. 2024-12-5

[3]
Understanding Hypertriglyceridemia: Integrating Genetic Insights.

Genes (Basel). 2024-1-30

[4]
The pathogenic mutations of APOA5 in Chinese patients with hyperlipidemic acute pancreatitis.

Lipids Health Dis. 2024-2-8

[5]
Molecular Linkage between Immune System Disorders and Atherosclerosis.

Curr Issues Mol Biol. 2023-11-1

[6]
Effects of miR-33 Deficiency on Metabolic and Cardiovascular Diseases: Implications for Therapeutic Intervention.

Int J Mol Sci. 2023-6-28

[7]
Development and validation of a simple-to-use nomogram for self-screening the risk of dyslipidemia.

Sci Rep. 2023-6-6

[8]
Rare primary dyslipidaemias associated with low LDL and HDL cholesterol values in Portugal.

Front Genet. 2023-4-17

[9]
Mendelian inheritance revisited: dominance and recessiveness in medical genetics.

Nat Rev Genet. 2023-7

[10]
An insertion mutation in the gene associated with spontaneous hyperlipidemia in mice.

Arch Med Sci Atheroscler Dis. 2022-8-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索