Zhang G, Song Z
School of Physics, Nankai University, Tianjin 300071, China.
Phys Rev Lett. 2015 Oct 23;115(17):177204. doi: 10.1103/PhysRevLett.115.177204. Epub 2015 Oct 22.
We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram.
我们证明了一类精确可解的量子伊辛模型,包括横场伊辛模型和各向异性XY模型,可以被表征为二维辅助空间中的回路。横场伊辛模型对应一个圆,XY模型对应一个椭圆,而其他模型则产生心形线、蚶线、内摆线和李萨如图形等。结果表明,作为回路函数的基态能量密度的变化,当相应回路的缠绕数改变时会经历一个非解析点。缠绕数可以作为扩展量子伊辛模型中量子相的拓扑量子数,这为量子相变与表征相图的几何序参量之间的关系提供了一些线索。