Musgrove Donald R, Hughes John, Eberly Lynn E
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA.
Biostatistics. 2016 Apr;17(2):291-303. doi: 10.1093/biostatistics/kxv044. Epub 2015 Nov 9.
We propose a spatial Bayesian variable selection method for detecting blood oxygenation level dependent activation in functional magnetic resonance imaging (fMRI) data. Typical fMRI experiments generate large datasets that exhibit complex spatial and temporal dependence. Fitting a full statistical model to such data can be so computationally burdensome that many practitioners resort to fitting oversimplified models, which can lead to lower quality inference. We develop a full statistical model that permits efficient computation. Our approach eases the computational burden in two ways. We partition the brain into 3D parcels, and fit our model to the parcels in parallel. Voxel-level activation within each parcel is modeled as regressions located on a lattice. Regressors represent the magnitude of change in blood oxygenation in response to a stimulus, while a latent indicator for each regressor represents whether the change is zero or non-zero. A sparse spatial generalized linear mixed model captures the spatial dependence among indicator variables within a parcel and for a given stimulus. The sparse SGLMM permits considerably more efficient computation than does the spatial model typically employed in fMRI. Through simulation we show that our parcellation scheme performs well in various realistic scenarios. Importantly, indicator variables on the boundary between parcels do not exhibit edge effects. We conclude by applying our methodology to data from a task-based fMRI experiment.
我们提出了一种空间贝叶斯变量选择方法,用于在功能磁共振成像(fMRI)数据中检测血氧水平依赖激活。典型的fMRI实验会生成大型数据集,这些数据集呈现出复杂的空间和时间依赖性。将完整的统计模型拟合到此类数据可能在计算上负担过重,以至于许多从业者 resort to 拟合过于简化的模型,这可能导致较低质量的推断。我们开发了一个允许高效计算的完整统计模型。我们的方法通过两种方式减轻了计算负担。我们将大脑划分为3D小块,并并行地将我们的模型拟合到这些小块上。每个小块内的体素级激活被建模为位于格点上的回归。回归变量表示对刺激的血氧变化幅度,而每个回归变量的潜在指标表示变化是否为零或非零。稀疏空间广义线性混合模型捕捉了一个小块内以及给定刺激下指标变量之间的空间依赖性。与fMRI中通常使用的空间模型相比,稀疏SGLMM允许更高效的计算。通过模拟,我们表明我们的分割方案在各种现实场景中表现良好。重要的是,小块边界上的指标变量不会表现出边缘效应。我们通过将我们的方法应用于基于任务的fMRI实验数据来得出结论。