Suppr超能文献

一种基于语法的新型方法,用于患者症状和疾病诊断信息的传播,以维护保密性和信息完整性。

A Novel Grammar-Based Approach for Patients' Symptom and Disease Diagnosis Information Dissemination to Maintain Confidentiality and Information Integrity.

作者信息

Nag Sanjay, Basu Nabanita, Bose Payal, Bandyopadhyay Samir Kumar

机构信息

Department of Computer Science and Engineering, Swami Vivekananda University, Barrackpore, Kolkata 7000121, India.

Department of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK.

出版信息

Bioengineering (Basel). 2024 Dec 13;11(12):1265. doi: 10.3390/bioengineering11121265.

Abstract

Disease prediction using computer-based methods is now an established area of research. The importance of technological intervention is necessary for the better management of disease, as well as to optimize use of limited resources. Various AI-based methods for disease prediction have been documented in the literature. Validated AI-based systems support diagnoses and decision making by doctors/medical practitioners. The resource-efficient dissemination of the symptoms identified and the diagnoses undertaken is the requirement of the present-day scenario to support paperless, yet seamless, information sharing. The representation of symptoms using grammar provides a novel way for the resource-efficient encoding of disease diagnoses. Initially, symptoms are represented as strings, and, in terms of grammar, this is called a sentence. Moreover, the conversion of the generated string containing the symptoms and the diagnostic outcome to a QR code post encryption makes it portable. The code can be stored in a mobile application, in a secure manner, and can be scanned wherever required, universally. The patient can carry the medical condition and the diagnosis in the form of the QR code for medical consultations. This research work presents a case study based on two diseases, influenza and coronavirus, to highlight the proposed methodology. Both diseases have some common and overlapping symptoms. The proposed system can be implemented for any kind of disease detection, including clinical and diagnostic imaging.

摘要

使用基于计算机的方法进行疾病预测现已成为一个既定的研究领域。技术干预对于更好地管理疾病以及优化有限资源的利用至关重要。文献中已记载了各种基于人工智能的疾病预测方法。经过验证的基于人工智能的系统支持医生/医学从业者进行诊断和决策。高效地传播所识别的症状和所做出的诊断是当今支持无纸化且无缝信息共享场景的要求。使用语法来表示症状为疾病诊断的高效编码提供了一种新方法。最初,症状被表示为字符串,从语法角度来说,这被称为一个句子。此外,将包含症状和诊断结果的生成字符串在加密后转换为二维码使其便于携带。该代码可以安全地存储在移动应用程序中,并且可以在任何需要的地方进行通用扫描。患者可以携带以二维码形式呈现的病情和诊断结果去进行医疗咨询。这项研究工作基于流感和冠状病毒这两种疾病进行了案例研究,以突出所提出的方法。这两种疾病都有一些共同和重叠的症状。所提出的系统可用于任何类型的疾病检测,包括临床和诊断成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f5/11673805/c33575d5a889/bioengineering-11-01265-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验