Suppr超能文献

基于混合导电聚合物/富勒烯纳米颗粒光敏剂的光动力疗法

Photodynamic Therapy with Blended Conducting Polymer/Fullerene Nanoparticle Photosensitizers.

作者信息

Doshi Mona, Gesquiere Andre J

机构信息

NanoScience Technology Center, University of Central Florida; Department of Chemistry, University of Central Florida.

NanoScience Technology Center, University of Central Florida; Department of Chemistry, University of Central Florida; Department of Materials Science and Engineering, University of Central Florida; CREOL, The College of Optics and Photonics, University of Central Florida;

出版信息

J Vis Exp. 2015 Oct 28(105):e53038. doi: 10.3791/53038.

Abstract

In this article a method for the fabrication and reproducible in-vitro evaluation of conducting polymer nanoparticles blended with fullerene as the next generation photosensitizers for Photodynamic Therapy (PDT) is reported. The nanoparticles are formed by hydrophobic interaction of the semiconducting polymer MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) with the fullerene PCBM (phenyl-C61-butyric acid methyl ester) in the presence of a non-compatible solvent. MEH-PPV has a high extinction coefficient that leads to high rates of triplet formation, and efficient charge and energy transfer to the fullerene PCBM. The latter processes enhance the efficiency of the PDT system through fullerene assisted triplet and radical formation, and ultrafast deactivation of MEH-PPV excited stated. The results reported here show that this nanoparticle PDT sensitizing system is highly effective and shows unexpected specificity to cancer cell lines.

摘要

本文报道了一种制备和可重复体外评估与富勒烯混合的导电聚合物纳米颗粒的方法,该纳米颗粒作为光动力疗法(PDT)的下一代光敏剂。纳米颗粒是在不相容溶剂存在下,通过半导体聚合物MEH-PPV(聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基])与富勒烯PCBM(苯基-C61-丁酸甲酯)的疏水相互作用形成的。MEH-PPV具有高消光系数,导致三线态形成速率高,并能有效地将电荷和能量转移到富勒烯PCBM。后一过程通过富勒烯辅助三线态和自由基形成以及MEH-PPV激发态的超快失活提高了PDT系统的效率。此处报道的结果表明,这种纳米颗粒PDT敏化系统非常有效,并且对癌细胞系表现出意想不到的特异性。

相似文献

2
Development and characterization of conducting polymer nanoparticles for photodynamic therapy in vitro.
Photodiagnosis Photodyn Ther. 2015 Sep;12(3):476-89. doi: 10.1016/j.pdpdt.2015.04.010. Epub 2015 May 11.
3
Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.
Chem Asian J. 2013 Oct;8(10):2370-6. doi: 10.1002/asia.201300039. Epub 2013 Jun 12.
4
Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy.
Macromol Rapid Commun. 2018 Mar;39(5). doi: 10.1002/marc.201700614. Epub 2017 Dec 18.
6
Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene.
Photochem Photobiol. 2010 Nov-Dec;86(6):1356-63. doi: 10.1111/j.1751-1097.2010.00790.x.
7
Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy.
Curr Drug Metab. 2012 Oct;13(8):1119-22. doi: 10.2174/138920012802850074.
9
Doping poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] with PbSe nanoparticles or fullerenes.
J Phys Condens Matter. 2008 Sep 24;20(38):382202. doi: 10.1088/0953-8984/20/38/382202. Epub 2008 Aug 21.
10
Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.
J Photochem Photobiol B. 2017 Aug;173:12-22. doi: 10.1016/j.jphotobiol.2017.05.028. Epub 2017 May 22.

本文引用的文献

1
Dye Sensitizers for Photodynamic Therapy.
Materials (Basel). 2013 Mar 6;6(3):817-840. doi: 10.3390/ma6030817.
2
Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells.
Chem Commun (Camb). 2013 Apr 21;49(31):3224-6. doi: 10.1039/c3cc41013g. Epub 2013 Mar 12.
5
Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress.
Arch Toxicol. 2012 Dec;86(12):1809-27. doi: 10.1007/s00204-012-0859-6. Epub 2012 May 5.
6
Applications of functionalized fullerenes in tumor theranostics.
Theranostics. 2012;2(3):238-50. doi: 10.7150/thno.3509. Epub 2012 Mar 1.
7
Photoinduced electron transfer from a conducting polymer to buckminsterfullerene.
Science. 1992 Nov 27;258(5087):1474-6. doi: 10.1126/science.258.5087.1474.
8
Cancer nanotechnology: opportunities and challenges.
Nat Rev Cancer. 2005 Mar;5(3):161-71. doi: 10.1038/nrc1566.
9
Photodynamic therapy for cancer.
Nat Rev Cancer. 2003 May;3(5):380-7. doi: 10.1038/nrc1071.
10
The role of apoptosis in response to photodynamic therapy: what, where, why, and how.
Photochem Photobiol Sci. 2002 Jan;1(1):1-21. doi: 10.1039/b108586g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验