文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物-脂质-PEG 杂化纳米粒作为光敏剂载体用于光动力治疗。

Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

机构信息

Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.

Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.

出版信息

J Photochem Photobiol B. 2017 Aug;173:12-22. doi: 10.1016/j.jphotobiol.2017.05.028. Epub 2017 May 22.


DOI:10.1016/j.jphotobiol.2017.05.028
PMID:28554072
Abstract

Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment.

摘要

聚合物-脂质-PEG 杂化纳米粒子被研究作为光敏剂(PS),5,10,15,20-四(4-羟基-苯基)-21H,23H-卟啉(pTHPP)的载体,用于光动力疗法(PDT)。使用自组装纳米沉淀技术制备了两种类型的核聚合物聚(D,L-丙交酯-co-乙交酯)(PLGA)和聚(羟基丁酸-co-羟基戊酸)(PHBV)与脂质-PEG 作为稳定剂。所得纳米粒子的平均粒径为 88.5±3.4nm 的 PLGA 和 215.0±6.3nm 的 PHBV。两种纳米粒子在 TEM 下均表现出核壳结构,具有高 ζ 电位和载药效率。X 射线粉末衍射分析表明,包封在聚合物纳米粒子内的 pTHPP 分子不再具有游离 pTHPP 的结晶状态峰。与非包封的 pTHPP 相比,包封在聚合物核内的 pTHPP 分子在单线态氧生成和 FTC-133 人甲状腺癌细胞系中的细胞摄取率方面表现出改善的光物理性质。与游离 pTHPP 相比,负载 pTHPP 的聚合物-脂质-PEG 纳米粒子在时间和浓度依赖性方面均显示出更好的体外光毒性。总的来说,这项研究提供了详细的分析,当 pTHPP 分子包封在 PLGA 或 PHBV 纳米核内时,其光物理性质,并证明了这些系统在递送光敏剂方面的有效性。这两种聚合物系统在与癌细胞一起使用时可能具有不同的潜在益处。例如,负载 pTHPP 的 PLGA 系统仅需很短的时间即可显示 PDT 效应,可能适用于局部 PDT,而负载 pTHPP 的 PHBV 系统的延迟光诱导细胞毒性效应可能更适合癌症实体瘤。因此,负载 pTHPP 的聚合物-脂质-PEG 纳米粒子都可以被认为是 PDT 癌症治疗的有前途的递药系统。

相似文献

[1]
Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

J Photochem Photobiol B. 2017-5-22

[2]
Overcoming the diverse mechanisms of multidrug resistance in lung cancer cells by photodynamic therapy using pTHPP-loaded PLGA-lipid hybrid nanoparticles.

Eur J Pharm Biopharm. 2020-2-26

[3]
Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating.

Nanotechnology. 2015-9-11

[4]
Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents.

J Mater Sci Mater Med. 2016-2

[5]
Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

Eur J Pharm Biopharm. 2012-3-14

[6]
Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy.

Nanomedicine (Lond). 2019-3-15

[7]
Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.

Int J Mol Sci. 2017-4-13

[8]
X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs.

Int J Nanomedicine. 2018-6-19

[9]
Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos.

Int J Pharm. 2004-11-22

[10]
5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies.

Drug Dev Ind Pharm. 2013-4-18

引用本文的文献

[1]
Harnessing nanotechnology for cancer treatment.

Front Bioeng Biotechnol. 2025-1-20

[2]
RGD peptide-conjugated polydopamine nanoparticles loaded with doxorubicin for combined chemotherapy and photothermal therapy in thyroid cancer.

Discov Oncol. 2024-12-18

[3]
Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication.

Int J Mol Sci. 2023-7-19

[4]
Microbial Poly(hydroxybutyrate-co-hydroxyvalerate) Scaffold for Periodontal Tissue Engineering.

Polymers (Basel). 2023-2-9

[5]
Current Challenges and Opportunities of Photodynamic Therapy against Cancer.

Pharmaceutics. 2023-1-18

[6]
PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells.

Molecules. 2022-11-28

[7]
A kNGR Peptide-Tethered Lipid-Polymer Hybrid Nanocarrier-Based Synergistic Approach for Effective Tumor Therapy: Development, Characterization, Ex-Vivo, and In-Vivo Assessment.

Pharmaceutics. 2022-7-3

[8]
A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications.

Front Bioeng Biotechnol. 2022-1-5

[9]
Nanoparticle Systems for Cancer Phototherapy: An Overview.

Nanomaterials (Basel). 2021-11-20

[10]
Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles.

Int J Mol Sci. 2021-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索