Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.
J Photochem Photobiol B. 2017 Aug;173:12-22. doi: 10.1016/j.jphotobiol.2017.05.028. Epub 2017 May 22.
Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment.
聚合物-脂质-PEG 杂化纳米粒子被研究作为光敏剂(PS),5,10,15,20-四(4-羟基-苯基)-21H,23H-卟啉(pTHPP)的载体,用于光动力疗法(PDT)。使用自组装纳米沉淀技术制备了两种类型的核聚合物聚(D,L-丙交酯-co-乙交酯)(PLGA)和聚(羟基丁酸-co-羟基戊酸)(PHBV)与脂质-PEG 作为稳定剂。所得纳米粒子的平均粒径为 88.5±3.4nm 的 PLGA 和 215.0±6.3nm 的 PHBV。两种纳米粒子在 TEM 下均表现出核壳结构,具有高 ζ 电位和载药效率。X 射线粉末衍射分析表明,包封在聚合物纳米粒子内的 pTHPP 分子不再具有游离 pTHPP 的结晶状态峰。与非包封的 pTHPP 相比,包封在聚合物核内的 pTHPP 分子在单线态氧生成和 FTC-133 人甲状腺癌细胞系中的细胞摄取率方面表现出改善的光物理性质。与游离 pTHPP 相比,负载 pTHPP 的聚合物-脂质-PEG 纳米粒子在时间和浓度依赖性方面均显示出更好的体外光毒性。总的来说,这项研究提供了详细的分析,当 pTHPP 分子包封在 PLGA 或 PHBV 纳米核内时,其光物理性质,并证明了这些系统在递送光敏剂方面的有效性。这两种聚合物系统在与癌细胞一起使用时可能具有不同的潜在益处。例如,负载 pTHPP 的 PLGA 系统仅需很短的时间即可显示 PDT 效应,可能适用于局部 PDT,而负载 pTHPP 的 PHBV 系统的延迟光诱导细胞毒性效应可能更适合癌症实体瘤。因此,负载 pTHPP 的聚合物-脂质-PEG 纳米粒子都可以被认为是 PDT 癌症治疗的有前途的递药系统。
J Photochem Photobiol B. 2017-5-22
Eur J Pharm Biopharm. 2012-3-14
Nanomedicine (Lond). 2019-3-15
Int J Nanomedicine. 2018-6-19
Front Bioeng Biotechnol. 2025-1-20
Polymers (Basel). 2023-2-9
Pharmaceutics. 2023-1-18
Front Bioeng Biotechnol. 2022-1-5
Nanomaterials (Basel). 2021-11-20