Public Health Research Center, Department of Health Systems Policy and Management, National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal.
Centro de Matemática e Aplicações Fundamentais, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
J Med Syst. 2016 Jan;40(1):2. doi: 10.1007/s10916-015-0363-7. Epub 2015 Oct 29.
The length of hospital stay (LOS) is an important measure of efficiency in the use of hospital resources. Acute Myocardial Infarction (AMI), as one of the diseases with higher mortality and LOS variability in the OECD countries, has been studied with predominant use of administrative data, particularly on mortality risk adjustment, failing investigation in the resource planning and specifically in LOS. This paper presents results of a predictive model for extended LOS (LOSE - above 75th percentile of LOS) using both administrative and clinical data, namely laboratory data, in order to develop a decision support system. Laboratory and administrative data of a Portuguese hospital were included, using logistic regression to develop this predictive model. A model with three laboratory data and seven administrative data variables (six comorbidities and age ≥ 69 years), with excellent discriminative ability and a good calibration, was obtained. The model validation shows also good results. Comorbidities were relevant predictors, mainly diabetes with complications, showing the highest odds of LOSE (OR = 37,83; p = 0,001). AMI patients with comorbidities (diabetes with complications, cerebrovascular disease, shock, respiratory infections, pulmonary oedema), with pO2 above level, aged 69 years or older, with cardiac dysrhythmia, neutrophils above level, pO2 below level, and prothrombin time above level, showed increased risk of extended LOS. Our findings are consistent with studies that refer these variables as predictors of increased risk.
住院时间(LOS)是衡量医院资源利用效率的一个重要指标。急性心肌梗死(AMI)是经合组织国家中死亡率和 LOS 变异性较高的疾病之一,主要使用行政数据进行研究,特别是在死亡率风险调整方面,而在资源规划方面,特别是在 LOS 方面的研究则较少。本文介绍了一种使用行政和临床数据(即实验室数据)预测 LOS 延长(LOSE-超过 LOS 第 75 个百分位数)的预测模型的结果,以便开发决策支持系统。使用逻辑回归开发该预测模型时,纳入了葡萄牙一家医院的实验室和行政数据。获得了一个具有三个实验室数据和七个行政数据变量(六种合并症和年龄≥69 岁)的模型,该模型具有出色的区分能力和良好的校准度。模型验证也显示出良好的结果。合并症是重要的预测因素,主要是伴有并发症的糖尿病,表明 LOSE 的可能性最高(OR=37.83;p=0.001)。患有合并症(伴有并发症的糖尿病、脑血管疾病、休克、呼吸道感染、肺水肿)、pO2 水平升高、年龄 69 岁或以上、心律失常、中性粒细胞升高、pO2 水平降低和凝血酶原时间升高的 AMI 患者,其 LOS 延长的风险增加。我们的研究结果与将这些变量作为增加风险预测因素的研究结果一致。