Wasfy Jason H, Kennedy Kevin F, Masoudi Frederick A, Ferris Timothy G, Arnold Suzanne V, Kini Vinay, Peterson Pamela, Curtis Jeptha P, Amin Amit P, Bradley Steven M, French William J, Messenger John, Ho P Michael, Spertus John A
Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (J.H.W.).
Saint Luke's Mid America Heart Institute/UMKC, Kansas City, MO (K.F.K., S.V.A., J.A.S.).
Circ Cardiovasc Qual Outcomes. 2018 Sep;11(9):e004635. doi: 10.1161/CIRCOUTCOMES.118.004635.
Background To improve value in the care of patients with acute myocardial infarction (MI), payment models increasingly hold providers accountable for costs. As such, providers need tools to predict length of stay (LOS) during hospitalization and the likelihood of needing postacute care facilities after discharge for acute MI patients. We developed models to estimate risk for prolonged LOS and postacute care for acute MI patients at time of hospital admission to facilitate coordinated care planning. Methods and Results We identified patients in the National Cardiovascular Data Registry ACTION registry (Acute Coronary Treatment and Intervention Outcomes Network) who were discharged alive after hospitalization for acute MI between July 1, 2008 and March 31, 2017. Within a 70% random sample (Training cohort) we developed hierarchical, proportional odds models to predict LOS and hierarchical logistic regression models to predict discharge to postacute care. Models were validated in the remaining 30%. Of 633 737 patients in the Training cohort, 16.8% had a prolonged LOS (≥7 days) and 7.8% were discharged to a postacute facility (extended care, a transitional care unit, or rehabilitation). Model discrimination was moderate in the validation dataset for predicting LOS (C statistic=0.640) and strong for predicting discharge to postacute care (C statistic=0.827). For both models, discrimination was similar in ST-segment-elevation MI and non-ST-segment-elevation MI subgroups and calibration was excellent. Conclusions These models developed in a national registry can be used at the time of initial hospitalization to predict LOS and discharge to postacute facilities. Prospective testing of these models is needed to establish how they can improve care coordination and lower costs.
背景 为提高急性心肌梗死(MI)患者的护理价值,支付模式越来越要求医疗服务提供者对成本负责。因此,医疗服务提供者需要工具来预测急性MI患者住院期间的住院时长(LOS)以及出院后需要入住急性后期护理机构的可能性。我们开发了模型,以估计急性MI患者入院时延长LOS和急性后期护理的风险,以促进协调护理计划。
方法与结果 我们在国家心血管数据注册库ACTION注册库(急性冠状动脉治疗和干预结果网络)中识别出在2008年7月1日至2017年3月31日期间因急性MI住院后存活出院的患者。在70%的随机样本(训练队列)中,我们开发了分层比例优势模型来预测LOS,并开发了分层逻辑回归模型来预测出院后入住急性后期护理机构的情况。模型在其余30%的样本中进行了验证。在训练队列的633737名患者中,16.8%的患者住院时长延长(≥7天),7.8%的患者出院后入住急性后期护理机构(扩展护理、过渡护理单元或康复机构)。在验证数据集中,预测LOS的模型辨别力中等(C统计量=0.640),预测出院后入住急性后期护理机构的模型辨别力较强(C统计量=0.827)。对于这两个模型,ST段抬高型MI和非ST段抬高型MI亚组的辨别力相似,校准效果良好。
结论 在全国注册库中开发的这些模型可在初次住院时用于预测LOS和出院后入住急性后期护理机构的情况。需要对这些模型进行前瞻性测试,以确定它们如何改善护理协调并降低成本。