Suppr超能文献

关于延长住院时间的决策支持系统:急性心肌梗死患者模型的验证与重新校准

Decision-making support systems on extended hospital length of stay: Validation and recalibration of a model for patients with AMI.

作者信息

Xavier Joana, Seringa Joana, Pinto Fausto José, Magalhães Teresa

机构信息

NOVA National School of Public Health, Nova University Lisbon, Lisbon, Portugal.

Serviço de Cardiologia do Centro Hospitalar de Lisboa Norte, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Front Med (Lausanne). 2023 Feb 8;10:907310. doi: 10.3389/fmed.2023.907310. eCollection 2023.

Abstract

BACKGROUND

Cardiovascular diseases are still a significant cause of death and hospitalization. In 2019, circulatory diseases were responsible for 29.9% of deaths in Portugal. These diseases have a significant impact on the hospital length of stay. Length of stay predictive models is an efficient way to aid decision-making in health. This study aimed to validate a predictive model on the extended length of stay in patients with acute myocardial infarction at the time of admission.

METHODS

An analysis was conducted to test and recalibrate a previously developed model in the prediction of prolonged length of stay, for a new set of population. The study was conducted based on administrative and laboratory data of patients admitted for acute myocardial infarction events from a public hospital in Portugal from 2013 to 2015.

RESULTS

Comparable performance measures were observed upon the validation and recalibration of the predictive model of extended length of stay. Comorbidities such as shock, diabetes with complications, dysrhythmia, pulmonary edema, and respiratory infections were the common variables found between the previous model and the validated and recalibrated model for acute myocardial infarction.

CONCLUSION

Predictive models for the extended length of stay can be applied in clinical practice since they are recalibrated and modeled to the relevant population characteristics.

摘要

背景

心血管疾病仍然是导致死亡和住院的重要原因。2019年,循环系统疾病在葡萄牙的死亡原因中占29.9%。这些疾病对住院时间有重大影响。住院时间预测模型是辅助医疗决策的有效方法。本研究旨在验证一种针对急性心肌梗死患者入院时延长住院时间的预测模型。

方法

进行了一项分析,以测试和重新校准先前开发的用于预测延长住院时间的模型,针对一组新的人群。该研究基于2013年至2015年葡萄牙一家公立医院收治的急性心肌梗死事件患者的行政和实验室数据进行。

结果

在对延长住院时间预测模型进行验证和重新校准后,观察到了可比的性能指标。休克、伴有并发症的糖尿病、心律失常、肺水肿和呼吸道感染等合并症是先前模型与急性心肌梗死验证和重新校准模型之间共同发现的变量。

结论

延长住院时间的预测模型可应用于临床实践,因为它们已根据相关人群特征进行了重新校准和建模。

相似文献

10
Length of stay in pediatric intensive care unit: prediction model.儿科重症监护病房的住院时间:预测模型
Einstein (Sao Paulo). 2020 Oct 7;18:eAO5476. doi: 10.31744/einstein_journal/2020AO5476. eCollection 2020.

本文引用的文献

8
The association between health care quality and cost: a systematic review.医疗保健质量与成本的关联:系统评价。
Ann Intern Med. 2013 Jan 1;158(1):27-34. doi: 10.7326/0003-4819-158-1-201301010-00006.
9
Factors influencing hospital high length of stay outliers.影响医院高住院日离群值的因素。
BMC Health Serv Res. 2012 Aug 20;12:265. doi: 10.1186/1472-6963-12-265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验