Suppr超能文献

HIV-2蛋白酶中的四个氨基酸变化赋予了全类对蛋白酶抑制剂的敏感性。

Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors.

作者信息

Raugi Dana N, Smith Robert A, Gottlieb Geoffrey S

机构信息

Department of Medicine, Division of Allergy & Infectious Diseases and Center for Emerging & Re-emerging Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA

Department of Medicine, Division of Allergy & Infectious Diseases and Center for Emerging & Re-emerging Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA.

出版信息

J Virol. 2015 Nov 11;90(2):1062-9. doi: 10.1128/JVI.01772-15. Print 2016 Jan 15.

Abstract

UNLABELLED

Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2' pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2.

IMPORTANCE

Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine FDA-approved HIV-1 protease inhibitors (PI) are active against HIV-2. The underlying reasons for intrinsic PI resistance in HIV-2 are not known. We examined the contributions of four amino acids in the ligand-binding pocket of the enzyme that differ between HIV-1 and HIV-2 by constructing HIV-2 clones encoding the corresponding HIV-1 amino acids and testing the PI susceptibilities of the resulting viruses. We found that the HIV-2 clone containing all four changes (PRΔ4) was as susceptible as HIV-1 to all nine PI. We also modeled the PRΔ4 enzyme structure and compared it to existing crystallographic structures of HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir. Our findings demonstrate that four positions in the ligand-binding cleft of protease are the primary cause of HIV-2 PI resistance.

摘要

未标记

蛋白酶对于逆转录病毒复制至关重要,蛋白酶抑制剂(PI)对治疗HIV感染很重要。HIV-2对大多数FDA批准的HIV-1 PI表现出内在抗性,仅对洛匹那韦、达芦那韦和沙奎那韦保留临床上有用的敏感性。这种抗性的机制尚不清楚;尽管HIV-1和HIV-2蛋白酶的序列同一性仅为38%至49%,但蛋白酶的所有关键结构特征都是保守的。结构研究表明配体结合口袋中的四个氨基酸(第32、47、76和82位)起作用。我们构建了HIV-2ROD9分子克隆,分别或一起编码相应的野生型HIV-1氨基酸(I32V、V47I、M76L和I82V)(克隆PRΔ4),并比较了突变型和野生型病毒对九种FDA批准的PI的表型敏感性(50%有效浓度[EC50])。单个氨基酸替换I32V、V47I和M76L增加了HIV-2对多种PI的敏感性,但没有单一变化赋予全类敏感性。相比之下,克隆PRΔ4对所有PI的PI敏感性与HIV-1相当或更高。我们还比较了与安普那韦和达芦那韦复合的野生型HIV-1和HIV-2蛋白酶的晶体结构与PRΔ4酶的模型。这些模型表明,PRΔ4对安普那韦的敏感性归因于蛋白酶二聚体的P2和P2'口袋中酶-抑制剂相互作用的稳定。总之,我们的结果表明,HIV-2蛋白酶中四个氨基酸变化的组合赋予了与HIV-1相当的PI敏感性模式,为HIV-2的内在PI抗性提供了结构依据,并解决了关于HIV-1和HIV-2中PI敏感性差异决定因素的长期问题。

重要性

蛋白酶对于逆转录病毒复制至关重要,HIV-1和HIV-2蛋白酶具有很大的结构相似性。然而,FDA批准的九种HIV-1蛋白酶抑制剂(PI)中只有三种对HIV-2有活性。HIV-2中内在PI抗性的根本原因尚不清楚。我们通过构建编码相应HIV-1氨基酸的HIV-2克隆并测试所得病毒的PI敏感性,研究了酶的配体结合口袋中四个HIV-1和HIV-2不同的氨基酸的作用。我们发现包含所有四个变化的HIV-2克隆(PRΔ4)对所有九种PI的敏感性与HIV-1相同。我们还对PRΔ4酶结构进行了建模,并将其与现有的与安普那韦和达芦那韦复合的HIV-1和HIV-

相似文献

1
Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors.
J Virol. 2015 Nov 11;90(2):1062-9. doi: 10.1128/JVI.01772-15. Print 2016 Jan 15.
3
HIV-1 protease mutation 82M contributes to phenotypic resistance to protease inhibitors in subtype G.
J Antimicrob Chemother. 2012 May;67(5):1075-9. doi: 10.1093/jac/dks010. Epub 2012 Feb 13.

引用本文的文献

2
Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance.
Bioengineering (Basel). 2022 Jul 25;9(8):335. doi: 10.3390/bioengineering9080335.
3
Human Immunodeficiency Virus Type 2: The Neglected Threat.
Pathogens. 2021 Oct 25;10(11):1377. doi: 10.3390/pathogens10111377.
5
Comparative protein structure network analysis on 3CL from SARS-CoV-1 and SARS-CoV-2.
Proteins. 2021 Sep;89(9):1216-1225. doi: 10.1002/prot.26143. Epub 2021 May 22.
6
Structural Impacts of Drug-Resistance Mutations Appearing in HIV-2 Protease.
Molecules. 2021 Jan 25;26(3):611. doi: 10.3390/molecules26030611.
8
Impacts of drug resistance mutations on the structural asymmetry of the HIV-2 protease.
BMC Mol Cell Biol. 2020 Jun 23;21(1):46. doi: 10.1186/s12860-020-00290-1.
10
Long-term immunological responses to treatment among HIV-2 patients in Côte d'Ivoire.
BMC Infect Dis. 2020 Mar 12;20(1):213. doi: 10.1186/s12879-020-4927-x.

本文引用的文献

1
2014 Update of the drug resistance mutations in HIV-1.
Top Antivir Med. 2014 Jun-Jul;22(3):642-50.
2
YASARA View - molecular graphics for all devices - from smartphones to workstations.
Bioinformatics. 2014 Oct 15;30(20):2981-2. doi: 10.1093/bioinformatics/btu426. Epub 2014 Jul 4.
4
Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments.
Antiviral Res. 2013 Apr;98(1):93-120. doi: 10.1016/j.antiviral.2013.01.007. Epub 2013 Feb 8.
5
Mutations selected in HIV-2-infected patients failing a regimen including atazanavir.
J Antimicrob Chemother. 2013 Jan;68(1):190-2. doi: 10.1093/jac/dks363. Epub 2012 Sep 13.
6
Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.
ACS Chem Biol. 2012 Sep 21;7(9):1536-46. doi: 10.1021/cb300191k. Epub 2012 Jul 2.
7
Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease.
J Am Chem Soc. 2012 Mar 7;134(9):4163-8. doi: 10.1021/ja2095766. Epub 2012 Feb 28.
8
Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease.
J Phys Chem B. 2012 Mar 1;116(8):2605-14. doi: 10.1021/jp211768n. Epub 2012 Feb 14.
9
Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors.
Protein Sci. 2012 Mar;21(3):339-50. doi: 10.1002/pro.2019. Epub 2012 Jan 24.
10
Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
FEBS J. 2010 Sep;277(18):3699-714. doi: 10.1111/j.1742-4658.2010.07771.x. Epub 2010 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验