Suppr超能文献

比较 SARS-CoV-1 和 SARS-CoV-2 的 3CL 蛋白结构网络分析。

Comparative protein structure network analysis on 3CL from SARS-CoV-1 and SARS-CoV-2.

机构信息

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.

出版信息

Proteins. 2021 Sep;89(9):1216-1225. doi: 10.1002/prot.26143. Epub 2021 May 22.

Abstract

The main protease M , 3CL is an important target from coronaviruses. In spite of having 96% sequence identity among M from SARS-CoV-1 and SARS-CoV-2; the inhibitors used to block the activity of SARS-CoV-1 M so far, were found to have differential inhibitory effect on M of SARS-CoV-2. The possible reason could be due to the difference of few amino acids among the peptidases. Since, overall 3-D crystallographic structure of M from SARS-CoV-1 and SARS-CoV-2 is quite similar and mapping a subtle structural variation is seemingly impossible. Hence, we have attempted to study a structural comparison of SARS-CoV-1 and SARS-CoV-2 M in apo and inhibitor bound states using protein structure network (PSN) based approach at contacts level. The comparative PSNs analysis of apo M from SARS-CoV-1 and SARS-CoV-2 uncovers small but significant local changes occurring near the active site region and distributed throughout the structure. Additionally, we have shown how inhibitor binding perturbs the PSG and the communication pathways in M . Moreover, we have also investigated the network connectivity on the quaternary structure of M and identified critical residue pairs for complex formation using three centrality measurement parameters along with the modularity analysis. Taken together, these results on the comparative PSN provide an insight into conformational changes that may be used as an additional guidance towards specific drug development.

摘要

主蛋白酶 M (3CL)是冠状病毒的一个重要靶点。尽管 SARS-CoV-1 和 SARS-CoV-2 的 M 蛋白具有 96%的序列同一性,但迄今为止用于阻断 SARS-CoV-1 M 活性的抑制剂,对 SARS-CoV-2 的 M 表现出不同的抑制作用。其可能的原因是由于肽酶之间存在少数氨基酸的差异。由于 SARS-CoV-1 和 SARS-CoV-2 的 M 整体三维晶体结构非常相似,映射细微的结构变化似乎是不可能的。因此,我们试图使用基于蛋白质结构网络(PSN)的方法在无配体和抑制剂结合状态下研究 SARS-CoV-1 和 SARS-CoV-2 M 的结构比较。对 SARS-CoV-1 和 SARS-CoV-2 的无配体 M 的比较 PSN 分析揭示了在活性位点区域附近和整个结构中发生的小但显著的局部变化。此外,我们还展示了抑制剂结合如何干扰 M 的 PSG 和通信途径。此外,我们还研究了 M 的四级结构的网络连接,并使用三个中心性测量参数和模块性分析来识别关键的残基对用于复合物形成。综上所述,这些关于比较 PSN 的结果提供了对构象变化的深入了解,这些变化可能被用作特定药物开发的额外指导。

相似文献

1
Comparative protein structure network analysis on 3CL from SARS-CoV-1 and SARS-CoV-2.
Proteins. 2021 Sep;89(9):1216-1225. doi: 10.1002/prot.26143. Epub 2021 May 22.
3
An Updated Review on SARS-CoV-2 Main Proteinase (M): Protein Structure and Small-Molecule Inhibitors.
Curr Top Med Chem. 2021;21(6):442-460. doi: 10.2174/1568026620666201207095117.
4
Disulfiram inhibits coronaviral main protease by conjugating to its substrate entry site.
Int J Biol Macromol. 2024 Sep;276(Pt 2):133955. doi: 10.1016/j.ijbiomac.2024.133955. Epub 2024 Jul 16.
5
Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface.
Comput Biol Chem. 2020 Dec;89:107372. doi: 10.1016/j.compbiolchem.2020.107372. Epub 2020 Sep 5.
6
SARS-CoV-2 M inhibitors and activity-based probes for patient-sample imaging.
Nat Chem Biol. 2021 Feb;17(2):222-228. doi: 10.1038/s41589-020-00689-z. Epub 2020 Oct 22.
7
N-Terminomics for the Identification of In Vitro Substrates and Cleavage Site Specificity of the SARS-CoV-2 Main Protease.
Proteomics. 2021 Jan;21(2):e2000246. doi: 10.1002/pmic.202000246. Epub 2020 Nov 17.
9
The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease.
Biochem Biophys Res Commun. 2022 Feb 5;591:130-136. doi: 10.1016/j.bbrc.2020.12.106. Epub 2021 Jan 6.

引用本文的文献

1
Prevention and treatment strategies for kidney transplant recipients in the context of long-term existence of COVID-19.
Front Med (Lausanne). 2024 Apr 3;11:1287836. doi: 10.3389/fmed.2024.1287836. eCollection 2024.
3
Discovery of 3CLpro inhibitor of SARS-CoV-2 main protease.
Future Sci OA. 2023 Apr 6;9(4):FSO853. doi: 10.2144/fsoa-2023-0020. eCollection 2023 Apr.
5
Probing structural basis for enhanced binding of SARS-CoV-2 P.1 variant spike protein with the human ACE2 receptor.
J Cell Biochem. 2022 Jul;123(7):1207-1221. doi: 10.1002/jcb.30276. Epub 2022 May 27.
6
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.

本文引用的文献

1
Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2's main protease.
Virol J. 2020 Nov 26;17(1):190. doi: 10.1186/s12985-020-01457-0.
2
SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3.
J Struct Biol. 2020 Sep 1;211(3):107575. doi: 10.1016/j.jsb.2020.107575. Epub 2020 Jul 10.
3
Topological analysis of SARS CoV-2 main protease.
Chaos. 2020 Jun;30(6):061102. doi: 10.1063/5.0013029.
4
webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules.
Nucleic Acids Res. 2020 Jul 2;48(W1):W94-W103. doi: 10.1093/nar/gkaa397.
5
Structure of M from SARS-CoV-2 and discovery of its inhibitors.
Nature. 2020 Jun;582(7811):289-293. doi: 10.1038/s41586-020-2223-y. Epub 2020 Apr 9.
7
Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.
Science. 2020 Apr 24;368(6489):409-412. doi: 10.1126/science.abb3405. Epub 2020 Mar 20.
8
Long-range correlation in protein dynamics: Confirmation by structural data and normal mode analysis.
PLoS Comput Biol. 2020 Feb 13;16(2):e1007670. doi: 10.1371/journal.pcbi.1007670. eCollection 2020 Feb.
9
A new coronavirus associated with human respiratory disease in China.
Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3.
10
Origin and evolution of pathogenic coronaviruses.
Nat Rev Microbiol. 2019 Mar;17(3):181-192. doi: 10.1038/s41579-018-0118-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验