Suppr超能文献

基于相位转移的相干全息图像重建(CHIRPT)的平面波分析

Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

作者信息

Field Jeffrey J, Winters David G, Bartels Randy A

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2015 Nov 1;32(11):2156-68. doi: 10.1364/JOSAA.32.002156.

Abstract

Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

摘要

荧光成像在众多科学研究中发挥着关键作用,尤其是在生物科学领域。荧光强度的三维成像通常需要串行数据采集,即使用非成像单元素探测器逐体素收集整个样本发出的荧光。虽然非成像荧光检测在一定程度上具有抗散射能力,但动态样本的成像速度受到严重限制。其他荧光成像技术利用成像检测来提高采集速率。一个显著的例子是光片荧光显微镜,也称为选择性平面照明显微镜,它照亮样本内的一个大区域,并以与照明光片垂直或倾斜的角度收集发出的荧光。不幸的是,在高度浑浊的生物介质中,发出的荧光的散射会导致采集图像的模糊。我们最近引入了一种称为相位转移相干全息图像重建(CHIRPT)的成像技术,它将类似光片的照明与非成像荧光检测相结合。通过将光片照明的速度与非成像检测的抗散射能力相结合,CHIRPT有望对生物成像产生重大影响,特别是对于体内制剂。在这里,我们给出了空间相干照明下CHIRPT成像的数学形式,并给出了验证理论模型的实验数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验