Bertin Eric, Baskaran Aparna, Chaté Hugues, Marchetti M Cristina
Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.
CNRS, LIPHY, F-38000 Grenoble, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042141. doi: 10.1103/PhysRevE.92.042141. Epub 2015 Oct 20.
Considering systems of self-propelled polar particles with nematic interactions ("rods"), we compare the continuum equations describing the evolution of polar and nematic order parameters, derived either from Smoluchowski or Boltzmann equations. Our main goal is to understand the discrepancies between the continuum equations obtained so far in both frameworks. We first show that, in the simple case of point-like particles with only alignment interactions, the continuum equations obtained have the same structure in both cases. We further study, in the Smoluchowski framework, the case where an interaction force is added on top of the aligning torque. This clarifies the origin of the additional terms obtained in previous works. Our observations lead us to emphasize the need for a more involved closure scheme than the standard normal form of the distribution when dealing with active systems.
考虑具有向列相互作用的自驱动极性粒子系统(“棒状粒子”),我们比较了从斯莫卢霍夫斯基方程或玻尔兹曼方程导出的、描述极性和向列序参量演化的连续介质方程。我们的主要目标是理解目前在这两种框架下得到的连续介质方程之间的差异。我们首先表明,在仅具有排列相互作用的点状粒子的简单情况下,两种情况下得到的连续介质方程具有相同的结构。我们进一步在斯莫卢霍夫斯基框架下研究了在排列扭矩之上添加相互作用力的情况。这阐明了先前工作中得到的附加项的来源。我们的观察结果促使我们强调,在处理活性系统时,需要一种比分布的标准正规形式更复杂的封闭方案。