DeBenedictis Andrew, Atherton Timothy J, Anquetil-Deck Candy, Cleaver Douglas J, Emerson David B, Wolak Mathew, Adler James H
Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA.
Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042501. doi: 10.1103/PhysRevE.92.042501. Epub 2015 Oct 5.
Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.
由于弹性各向异性,衬底的二维图案化可以促进相邻向列型液晶的弱方位取向。在这里,我们考虑如何使用圆形或椭圆形图案的周期性方格来实现这种取向。特别是,我们研究了晶格和图案如何结合以有利于不同的取向。通过蒙特卡罗模拟和连续介质弹性理论,我们发现,对于圆形图案,覆盖率控制着极锚定角和方位取向的转变。如果将圆推广为椭圆,通过相对于周期性晶格图案适当调整椭圆图案,可以实现对有效易轴和有效锚定势的任意控制。这在单稳态和双稳态液晶器件环境中都有潜在应用。