Suppr超能文献

用于具有大粘度比和高佩克莱特数的不可压缩混溶流的多松弛时间格子玻尔兹曼模型

Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number.

作者信息

Meng Xuhui, Guo Zhaoli

机构信息

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):043305. doi: 10.1103/PhysRevE.92.043305. Epub 2015 Oct 16.

Abstract

A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002)]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

摘要

本文提出了一种具有多松弛时间(MRT)碰撞算子的格子玻尔兹曼模型,用于模拟大粘度比以及高佩克莱数的不可压缩可混溶流动。本模型中的平衡态是由稻室等人先前开发的格子动力学格式[《伦敦皇家学会哲学学报》,A辑360, 477 (2002)]推导而来。在该模型中,流体粘度和扩散系数既取决于相应的松弛时间,也取决于额外的可调参数。因此,可以在适当范围内调整相应的松弛时间,以提高模型的性能。对泊肃叶流和一个扩散反应问题的数值验证表明,所提出的模型在空间上具有二阶精度。此后,该模型被用于模拟通过多孔介质的流动,结果表明所提出的模型具有获得与粘度无关的渗透率的优势,这使其成为模拟多孔介质中流动的一种稳健方法。最后,对两平行板间的粘性可混溶驱替进行了一系列模拟。结果表明,本模型能够高精度地模拟大粘度比和/或高佩克莱数的流动。此外,本模型在高运动粘度极限下具有出色的稳定性。总之,数值结果表明,所提出的格子玻尔兹曼模型是模拟大粘度比和/或高佩克莱数流动的理想数值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验