Zheng Hao, Dietrich Carsten, Hongoh Yuichi, Brune Andreas
Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan.
Mol Biol Evol. 2016 Mar;33(3):721-5. doi: 10.1093/molbev/msv264. Epub 2015 Nov 13.
Long-term vertical transmission of intracellular bacteria causes massive genomic erosion and results in extremely small genomes, particularly in ancient symbionts. Genome reduction is typically preceded by the accumulation of pseudogenes and proliferation of mobile genetic elements, which are responsible for chromosome rearrangements during the initial stage of endosymbiosis. We compared the genomes of an endosymbiont of termite gut flagellates, "Candidatus Endomicrobium trichonymphae," and its free-living relative Endomicrobium proavitum and discovered many remnants of restriction-modification (R-M) systems that are consistently associated with genome rearrangements in the endosymbiont genome. The rearrangements include apparent insertions, transpositions, and the duplication of a genomic region; there was no evidence of transposon structures or other mobile elements. Our study reveals a so far unrecognized mechanism for genome rearrangements in intracellular symbionts and sheds new light on the general role of R-M systems in genome evolution.
细胞内细菌的长期垂直传播会导致大量基因组侵蚀,并产生极小的基因组,尤其是在古老的共生菌中。基因组缩减通常先于假基因的积累和可移动遗传元件的增殖,这些元件在共生初期负责染色体重排。我们比较了白蚁肠道鞭毛虫的内共生菌“候选内共生微菌”及其自由生活的亲缘种“内共生微菌”的基因组,发现了许多限制修饰(R-M)系统的残余物,这些残余物始终与内共生菌基因组中的染色体重排相关。重排包括明显的插入、转座和一个基因组区域的复制;没有转座子结构或其他可移动元件的证据。我们的研究揭示了一种迄今为止未被认识的细胞内共生菌基因组重排机制,并为R-M系统在基因组进化中的一般作用提供了新的线索。