Suppr超能文献

学习脑电图中的循环波形。

Learning Recurrent Waveforms Within EEGs.

作者信息

Brockmeier Austin J, Principe Jose C

出版信息

IEEE Trans Biomed Eng. 2016 Jan;63(1):43-54. doi: 10.1109/TBME.2015.2499241. Epub 2015 Nov 10.

Abstract

GOAL

We demonstrate an algorithm to automatically learn the time-limited waveforms associated with phasic events that repeatedly appear throughout an electroencephalogram.

METHODS

To learn the phasic event waveforms we propose a multiscale modeling process that is based on existing shift-invariant dictionary learning algorithms. For each channel, waveforms at different temporal scales are learned based on the assumption that only a few waveforms occur in any window of the time-series, but the same waveforms reoccur throughout the signal. Once the waveforms are learned, the timing and amplitude of the phasic event occurrences are estimated using matching pursuit. To summarize the waveforms learned across multiple channels and subjects, we analyze their frequency content, their similarity to Gabor-Morlet wavelets, and perform shift-invariant k-means to cluster the waveforms. A prototype waveform from each cluster is then tested for differential spatial patterns between different motor imagery conditions.

RESULTS

On multiple human EEG datasets, the learned waveforms capture key characteristics of signals they were trained to represent, with a consistency in waveform morphology and frequency content across multiple training sections and initializations. On multichannel datasets, the spatial amplitude patterns of the waveforms are also consistent and can be used to distinguish different modalities of motor imagery.

CONCLUSION

We explored a methodology that can be used for modeling the recurrent waveforms in EEG traces.

SIGNIFICANCE

The methodology automatically identifies the most frequent phasic event waveforms in EEG, which could then be used as features for automatic evaluation and comparison of EEG during sleep, pathology, or mentally engaging tasks.

摘要

目标

我们展示了一种算法,用于自动学习与在脑电图中反复出现的阶段性事件相关的限时波形。

方法

为了学习阶段性事件波形,我们提出了一种基于现有平移不变字典学习算法的多尺度建模过程。对于每个通道,基于以下假设学习不同时间尺度的波形:在时间序列的任何窗口中仅出现少数波形,但相同的波形在整个信号中反复出现。一旦学习到波形,就使用匹配追踪估计阶段性事件发生的时间和幅度。为了总结跨多个通道和受试者学习到的波形,我们分析它们的频率内容、它们与Gabor - Morlet小波的相似性,并执行平移不变k均值对波形进行聚类。然后针对不同运动想象条件之间的差异空间模式测试每个聚类的原型波形。

结果

在多个人类脑电图数据集上,学习到的波形捕获了它们被训练来表示的信号的关键特征,在多个训练部分和初始化过程中波形形态和频率内容具有一致性。在多通道数据集上,波形的空间幅度模式也具有一致性,可用于区分不同的运动想象模式。

结论

我们探索了一种可用于对脑电图迹线中的循环波形进行建模的方法。

意义

该方法自动识别脑电图中最频繁的阶段性事件波形,然后可将其用作睡眠、病理或脑力任务期间脑电图自动评估和比较的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验