Suppr超能文献

研究神经振荡的方法论考虑。

Methodological considerations for studying neural oscillations.

机构信息

Department of Cognitive Science, University of California, San Diego, San Diego, California, USA.

Neurosciences Graduate Program, University of California, San Diego, San Diego, California, USA.

出版信息

Eur J Neurosci. 2022 Jun;55(11-12):3502-3527. doi: 10.1111/ejn.15361. Epub 2021 Jul 16.

Abstract

Neural oscillations are ubiquitous across recording methodologies and species, broadly associated with cognitive tasks, and amenable to computational modelling that investigates neural circuit generating mechanisms and neural population dynamics. Because of this, neural oscillations offer an exciting potential opportunity for linking theory, physiology and mechanisms of cognition. However, despite their prevalence, there are many concerns-new and old-about how our analysis assumptions are violated by known properties of field potential data. For investigations of neural oscillations to be properly interpreted, and ultimately developed into mechanistic theories, it is necessary to carefully consider the underlying assumptions of the methods we employ. Here, we discuss seven methodological considerations for analysing neural oscillations. The considerations are to (1) verify the presence of oscillations, as they may be absent; (2) validate oscillation band definitions, to address variable peak frequencies; (3) account for concurrent non-oscillatory aperiodic activity, which might otherwise confound measures; measure and account for (4) temporal variability and (5) waveform shape of neural oscillations, which are often bursty and/or nonsinusoidal, potentially leading to spurious results; (6) separate spatially overlapping rhythms, which may interfere with each other; and (7) consider the required signal-to-noise ratio for obtaining reliable estimates. For each topic, we provide relevant examples, demonstrate potential errors of interpretation, and offer suggestions to address these issues. We primarily focus on univariate measures, such as power and phase estimates, though we discuss how these issues can propagate to multivariate measures. These considerations and recommendations offer a helpful guide for measuring and interpreting neural oscillations.

摘要

神经振荡在各种记录方法和物种中普遍存在,与认知任务广泛相关,并且适合于计算建模,可用于研究神经回路产生机制和神经群体动力学。因此,神经振荡为将理论、生理学和认知机制联系起来提供了一个令人兴奋的潜在机会。然而,尽管它们很普遍,但仍有许多人担心,我们的分析假设如何受到现场潜在数据的已知特性的影响。为了正确解释神经振荡的研究,并最终将其发展为机械理论,有必要仔细考虑我们所采用的方法的潜在假设。在这里,我们讨论了分析神经振荡的七个方法学注意事项。这些考虑因素是:(1)验证振荡的存在,因为它们可能不存在;(2)验证振荡频带的定义,以解决可变的峰值频率;(3)考虑到同时存在的非振荡的非周期性活动,否则可能会干扰测量;(4)测量和考虑神经振荡的时间可变性和(5)波形形状,它们通常是爆发性的和/或非正弦的,可能导致虚假结果;(6)分离空间重叠的节律,它们可能相互干扰;(7)考虑获得可靠估计所需的信噪比。对于每个主题,我们提供相关的示例,演示潜在的解释错误,并提供解决这些问题的建议。我们主要关注单变量测量,如功率和相位估计,尽管我们讨论了这些问题如何传播到多变量测量。这些考虑因素和建议为测量和解释神经振荡提供了有用的指南。

相似文献

1
Methodological considerations for studying neural oscillations.
Eur J Neurosci. 2022 Jun;55(11-12):3502-3527. doi: 10.1111/ejn.15361. Epub 2021 Jul 16.
2
Cycle-by-cycle analysis of neural oscillations.
J Neurophysiol. 2019 Aug 1;122(2):849-861. doi: 10.1152/jn.00273.2019. Epub 2019 Jul 3.
3
Brain Oscillations and the Importance of Waveform Shape.
Trends Cogn Sci. 2017 Feb;21(2):137-149. doi: 10.1016/j.tics.2016.12.008. Epub 2017 Jan 4.
4
Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease.
J Neurosci. 2017 May 3;37(18):4830-4840. doi: 10.1523/JNEUROSCI.2208-16.2017. Epub 2017 Apr 17.
5
Automatic decomposition of electrophysiological data into distinct nonsinusoidal oscillatory modes.
J Neurophysiol. 2021 Nov 1;126(5):1670-1684. doi: 10.1152/jn.00315.2021. Epub 2021 Oct 6.
7
Enhancing oscillations in intracranial electrophysiological recordings with data-driven spatial filters.
PLoS Comput Biol. 2021 Aug 19;17(8):e1009298. doi: 10.1371/journal.pcbi.1009298. eCollection 2021 Aug.
8
New methods for oscillation analyses push new theories of discrete cognition.
Psychophysiology. 2022 May;59(5):e13827. doi: 10.1111/psyp.13827. Epub 2021 May 4.
9
Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics.
J Neurophysiol. 2021 Oct 1;126(4):1190-1208. doi: 10.1152/jn.00201.2021. Epub 2021 Aug 18.
10
Oscillation-Based Connectivity Architecture Is Dominated by an Intrinsic Spatial Organization, Not Cognitive State or Frequency.
J Neurosci. 2021 Jan 6;41(1):179-192. doi: 10.1523/JNEUROSCI.2155-20.2020. Epub 2020 Nov 17.

引用本文的文献

1
Recurrence affects the geometry of visual representations across the ventral visual stream in the human brain.
PLoS Biol. 2025 Aug 25;23(8):e3003354. doi: 10.1371/journal.pbio.3003354. eCollection 2025 Aug.
2
Aperiodic activity masks sensorimotor mu suppression during human action observation.
Soc Cogn Affect Neurosci. 2025 Jan 18;20(1). doi: 10.1093/scan/nsaf059.
3
Modulating somatosensory alpha oscillations using short-period transcranial alternating current stimulation.
Imaging Neurosci (Camb). 2025 Apr 7;3. doi: 10.1162/imag_a_00531. eCollection 2025.
4
Overcoming harmonic hurdles: Genuine beta-band rhythms vs. contributions of alpha-band waveform shape.
Imaging Neurosci (Camb). 2023 Sep 11;1. doi: 10.1162/imag_a_00018. eCollection 2023.
5
Differential representations of spatial location by aperiodic and alpha oscillatory activity in working memory.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2506418122. doi: 10.1073/pnas.2506418122. Epub 2025 Jul 24.
6
Quantitative electroencephalography in the diagnosis of dementia with Lewy bodies.
Clin Neurophysiol Pract. 2025 Jul 2;10:222-233. doi: 10.1016/j.cnp.2025.06.008. eCollection 2025.
8
Identifying individuals from their brain natural frequency fingerprints.
Sci Rep. 2025 Jul 2;15(1):22492. doi: 10.1038/s41598-025-05632-7.
10
Interference Control Under the Stroop Task and Brain Oscillatory Activity among Internet Addicts Compared to Non-addicts.
Basic Clin Neurosci. 2024 Sep-Oct;15(5):631-648. doi: 10.32598/bcn.2023.4974.1. Epub 2024 Sep 1.

本文引用的文献

1
Detecting Spontaneous Neural Oscillation Events in Primate Auditory Cortex.
eNeuro. 2022 Aug 19;9(4). doi: 10.1523/ENEURO.0281-21.2022. Print 2022 Jul-Aug.
2
Oscillatory and Aperiodic Neural Activity Jointly Predict Language Learning.
J Cogn Neurosci. 2022 Aug 1;34(9):1630-1649. doi: 10.1162/jocn_a_01878.
5
Dissociating harmonic and non-harmonic phase-amplitude coupling in the human brain.
Neuroimage. 2021 Feb 15;227:117648. doi: 10.1016/j.neuroimage.2020.117648. Epub 2020 Dec 15.
6
Parameterizing neural power spectra into periodic and aperiodic components.
Nat Neurosci. 2020 Dec;23(12):1655-1665. doi: 10.1038/s41593-020-00744-x. Epub 2020 Nov 23.
10
A data-driven method to identify frequency boundaries in multichannel electrophysiology data.
J Neurosci Methods. 2021 Jan 1;347:108949. doi: 10.1016/j.jneumeth.2020.108949. Epub 2020 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验