Eschbach Markus, Młyńczak Ewa, Kellner Jens, Kampmeier Jörn, Lanius Martin, Neumann Elmar, Weyrich Christian, Gehlmann Mathias, Gospodarič Pika, Döring Sven, Mussler Gregor, Demarina Nataliya, Luysberg Martina, Bihlmayer Gustav, Schäpers Thomas, Plucinski Lukasz, Blügel Stefan, Morgenstern Markus, Schneider Claus M, Grützmacher Detlev
Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-6) and JARA-FIT, 52425 Jülich, Germany.
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.
Nat Commun. 2015 Nov 17;6:8816. doi: 10.1038/ncomms9816.
Three-dimensional (3D) topological insulators are a new state of quantum matter, which exhibits both a bulk band structure with an insulating energy gap as well as metallic spin-polarized Dirac fermion states when interfaced with a topologically trivial material. There have been various attempts to tune the Dirac point to a desired energetic position for exploring its unusual quantum properties. Here we show a direct experimental proof by angle-resolved photoemission of the realization of a vertical topological p-n junction made of a heterostructure of two different binary 3D TI materials Bi2Te3 and Sb2Te3 epitaxially grown on Si(111). We demonstrate that the chemical potential is tunable by about 200 meV when decreasing the upper Sb2Te3 layer thickness from 25 to 6 quintuple layers without applying any external bias. These results make it realistic to observe the topological exciton condensate and pave the way for exploring other exotic quantum phenomena in the near future.
三维(3D)拓扑绝缘体是一种新型量子物质状态,它既具有带绝缘能隙的体带结构,又在与拓扑平凡材料接触时呈现金属性自旋极化狄拉克费米子态。人们进行了各种尝试,将狄拉克点调至期望的能量位置,以探索其非同寻常的量子特性。在此,我们通过角分辨光电子能谱给出了直接实验证据,证明了由两种不同的二元3D拓扑绝缘体材料Bi2Te3和Sb2Te3在Si(111)上外延生长形成的异质结构实现了垂直拓扑p-n结。我们证明,在不施加任何外部偏压的情况下,当将上层Sb2Te3层厚度从25个五重层减小到6个五重层时,化学势可调节约200毫电子伏特。这些结果使得观察拓扑激子凝聚成为现实,并为在不久的将来探索其他奇异量子现象铺平了道路。