Suppr超能文献

重新审视细菌中糖利用的层级结构

Rethinking the Hierarchy of Sugar Utilization in Bacteria.

作者信息

Beisel Chase L, Afroz Taliman

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

J Bacteriol. 2015 Nov 16;198(3):374-6. doi: 10.1128/JB.00890-15. Print 2016 Feb 1.

Abstract

Bacteria are known to consume some sugars over others, although recent work reported by Koirala and colleagues in this issue of the Journal of Bacteriology (S. Koirala, X. Wang, and C. V. Rao, J Bacteriol 198:386-393, 2016, http://dx.doi.org/10.1128/JB.00709-15) revealed that individual cells do not necessarily follow this hierarchy. By studying the preferential consumption of l-arabinose over d-xylose in Escherichia coli, those authors found that subpopulations consume one, the other, or both sugars through cross-repression between utilization pathways. Their findings challenge classic assertions about established hierarchies and can guide efforts to engineer the simultaneous utilization of multiple sugars.

摘要

众所周知,细菌消耗某些糖类的能力强于其他糖类,不过科伊拉勒及其同事在本期《细菌学杂志》上发表的最新研究(S. 科伊拉勒、X. 王和C. V. 拉奥,《细菌学杂志》198:386 - 393,2016年,http://dx.doi.org/10.1128/JB.00709 - 15)表明,单个细胞不一定遵循这种等级关系。通过研究大肠杆菌中L - 阿拉伯糖相对于D - 木糖的优先消耗情况,这些作者发现亚群通过利用途径之间的交叉抑制来消耗其中一种、另一种或两种糖类。他们的发现挑战了关于既定等级关系的经典论断,并可为设计多种糖类同时利用的研究提供指导。

相似文献

1
Rethinking the Hierarchy of Sugar Utilization in Bacteria.
J Bacteriol. 2015 Nov 16;198(3):374-6. doi: 10.1128/JB.00890-15. Print 2016 Feb 1.
2
Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
J Bacteriol. 2015 Nov 2;198(3):386-93. doi: 10.1128/JB.00709-15. Print 2016 Feb 1.
3
The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
Gene. 2012 Aug 1;504(1):116-21. doi: 10.1016/j.gene.2012.04.074. Epub 2012 May 3.
4
[Carbon catabolite repression or how bacteria choose their favorite sugars].
Med Sci (Paris). 2018 Jun-Jul;34(6-7):531-539. doi: 10.1051/medsci/20183406012. Epub 2018 Jul 31.
5
Protein Synthesis during Germination: Shedding New Light on a Classical Question.
J Bacteriol. 2016 Nov 18;198(24):3251-3253. doi: 10.1128/JB.00721-16. Print 2016 Dec 15.
6
Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
Biotechnol Bioeng. 2014 Jun;111(6):1108-15. doi: 10.1002/bit.25182. Epub 2014 Jan 23.
7
Small RNAs Repress Expression of Polysaccharide Utilization Loci of Gut Bacteroides Species.
J Bacteriol. 2016 Aug 25;198(18):2396-8. doi: 10.1128/JB.00514-16. Print 2016 Sep 15.
8
Bacterial sugar utilization gives rise to distinct single-cell behaviours.
Mol Microbiol. 2014 Sep;93(6):1093-1103. doi: 10.1111/mmi.12695. Epub 2014 Jul 16.
9
The transport and mediation mechanisms of the common sugars in Escherichia coli.
Biotechnol Adv. 2014 Sep-Oct;32(5):905-19. doi: 10.1016/j.biotechadv.2014.04.009. Epub 2014 Apr 26.
10
Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
Appl Environ Microbiol. 2015 Feb;81(4):1452-62. doi: 10.1128/AEM.03199-14.

引用本文的文献

1
Convergent evolution of distinct D-ribulose utilisation pathways in attaching and effacing pathogens.
Nat Commun. 2025 Jul 29;16(1):6976. doi: 10.1038/s41467-025-62476-5.
2
Environmental cues in different host niches shape the survival fitness of Staphylococcus aureus.
Nat Commun. 2025 Jul 28;16(1):6928. doi: 10.1038/s41467-025-62292-x.
3
Microbe-Based Sensor for Long-Term Detection of Urine Glucose.
Sensors (Basel). 2022 Jul 17;22(14):5340. doi: 10.3390/s22145340.
5
Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation.
BMC Microbiol. 2021 Dec 6;21(1):332. doi: 10.1186/s12866-021-02395-9.
6
Malate-Dependent Carbon Utilization Enhances Central Metabolism and Contributes to Biological Fitness of via CRP Regulation.
Front Microbiol. 2019 Aug 28;10:1991. doi: 10.3389/fmicb.2019.01991. eCollection 2019.
8
Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction.
Genet Mol Biol. 2019 Jan-Mar;42(1):145-150. doi: 10.1590/1678-4685-GMB-2017-0376. Epub 2019 Mar 11.
9
Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in ATCC 824.
mSystems. 2018 Oct 23;3(5). doi: 10.1128/mSystems.00064-18. eCollection 2018 Sep-Oct.
10
Receptor uptake arrays for vitamin B, siderophores, and glycans shape bacterial communities.
Ecol Evol. 2017 Oct 24;7(23):10175-10195. doi: 10.1002/ece3.3544. eCollection 2017 Dec.

本文引用的文献

1
Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
J Bacteriol. 2015 Nov 2;198(3):386-93. doi: 10.1128/JB.00709-15. Print 2016 Feb 1.
2
Hierarchy of non-glucose sugars in Escherichia coli.
BMC Syst Biol. 2014 Dec 24;8:133. doi: 10.1186/s12918-014-0133-z.
3
Black and white with some shades of grey: the diverse responses of inducible metabolic pathways in Escherichia coli.
Mol Microbiol. 2014 Sep;93(6):1079-83. doi: 10.1111/mmi.12734. Epub 2014 Aug 7.
4
Bacterial sugar utilization gives rise to distinct single-cell behaviours.
Mol Microbiol. 2014 Sep;93(6):1093-1103. doi: 10.1111/mmi.12695. Epub 2014 Jul 16.
5
Bet-hedging during bacterial diauxic shift.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7427-32. doi: 10.1073/pnas.1320063111. Epub 2014 May 5.
6
Trade-offs in engineering sugar utilization pathways for titratable control.
ACS Synth Biol. 2015 Feb 20;4(2):141-9. doi: 10.1021/sb400162z. Epub 2014 Apr 28.
8
Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.
Curr Opin Struct Biol. 2011 Aug;21(4):488-94. doi: 10.1016/j.sbi.2011.05.001. Epub 2011 May 19.
9
Regulation of arabinose and xylose metabolism in Escherichia coli.
Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18.
10
Adaptive prediction of environmental changes by microorganisms.
Nature. 2009 Jul 9;460(7252):220-4. doi: 10.1038/nature08112. Epub 2009 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验