Lakhal-Chaieb Lajmi, Cook Richard J, Lin Xihong
Département de mathématiques et statistique, Université Laval, Québec, Canada.
Biometrics. 2010 Dec;66(4):1145-52. doi: 10.1111/j.1541-0420.2010.01404.x.
In life history studies, interest often lies in the analysis of the interevent, or gap times and the association between event times. Gap time analyses are challenging however, even when the length of follow-up is determined independently of the event process, because associations between gap times induce dependent censoring for second and subsequent gap times. This article discusses nonparametric estimation of the association between consecutive gap times based on Kendall's τ in the presence of this type of dependent censoring. A nonparametric estimator that uses inverse probability of censoring weights is provided. Estimates of conditional gap time distributions can be obtained following specification of a particular copula function. Simulation studies show the estimator performs well and compares favorably with an alternative estimator. Generalizations to a piecewise constant Clayton copula are given. Several simulation studies and illustrations with real data sets are also provided.
在生活史研究中,人们常常关注事件间(即间隔时间)的分析以及事件发生时间之间的关联。然而,间隔时间分析颇具挑战性,即便随访时长是独立于事件过程确定的,因为间隔时间之间的关联会导致对第二个及后续间隔时间的依赖删失。本文讨论在存在此类依赖删失的情况下,基于肯德尔τ系数对连续间隔时间之间的关联进行非参数估计。提供了一种使用删失权重逆概率的非参数估计量。在指定特定的Copula函数后,可以获得条件间隔时间分布的估计值。模拟研究表明该估计量表现良好,且与另一种估计量相比具有优势。还给出了对分段常数克莱顿Copula的推广。同时提供了多项模拟研究以及真实数据集的示例。