Suppr超能文献

探索大构象变化的自由能景观:用激发的正则模态进行分子动力学。

Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes.

机构信息

Programa de Computação Científica, Fundação Oswaldo Cruz , 21040-360, Rio de Janeiro, Brazil.

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , 21949-901 Rio de Janeiro, Brazil.

出版信息

J Chem Theory Comput. 2015 Jun 9;11(6):2755-67. doi: 10.1021/acs.jctc.5b00003.

Abstract

Proteins are found in solution as ensembles of conformations in dynamic equilibrium. Exploration of functional motions occurring on micro- to millisecond time scales by molecular dynamics (MD) simulations still remains computationally challenging. Alternatively, normal mode (NM) analysis is a well-suited method to characterize intrinsic slow collective motions, often associated with protein function, but the absence of anharmonic effects preclude a proper characterization of conformational distributions in a multidimensional NM space. Using both methods jointly appears to be an attractive approach that allows an extended sampling of the conformational space. In line with this view, the MDeNM (molecular dynamics with excited normal modes) method presented here consists of multiple-replica short MD simulations in which motions described by a given subset of low-frequency NMs are kinetically excited. This is achieved by adding additional atomic velocities along several randomly determined linear combinations of NM vectors, thus allowing an efficient coupling between slow and fast motions. The relatively high-energy conformations generated with MDeNM are further relaxed with standard MD simulations, enabling free energy landscapes to be determined. Two widely studied proteins were selected as examples: hen egg lysozyme and HIV-1 protease. In both cases, MDeNM provides a larger extent of sampling in a few nanoseconds, outperforming long standard MD simulations. A high degree of correlation with motions inferred from experimental sources (X-ray, EPR, and NMR) and with free energy estimations obtained by metadynamics was observed. Finally, the large sets of conformations obtained with MDeNM can be used to better characterize relevant dynamical populations, allowing for a better interpretation of experimental data such as SAXS curves and NMR spectra.

摘要

蛋白质以处于动态平衡的构象集合形式存在于溶液中。通过分子动力学(MD)模拟探索发生在微秒到毫秒时间尺度上的功能运动仍然具有计算挑战性。另一方面,正常模式(NM)分析是一种很好的方法,可以描述与蛋白质功能相关的固有缓慢集体运动,但缺乏非谐效应会妨碍在多维 NM 空间中对构象分布进行适当的描述。联合使用这两种方法似乎是一种很有吸引力的方法,可以扩展构象空间的采样。基于这一观点,这里提出的 MDeNM(具有激发正常模式的分子动力学)方法包括多个短 MD 模拟,其中由给定的低频 NM 子集描述的运动被动力学激发。这是通过沿着几个随机确定的 NM 向量的线性组合添加附加的原子速度来实现的,从而允许在慢运动和快运动之间进行有效的耦合。用 MDeNM 生成的相对高能构象用标准 MD 模拟进一步松弛,从而可以确定自由能景观。选择了两种广泛研究的蛋白质作为示例:鸡卵溶菌酶和 HIV-1 蛋白酶。在这两种情况下,MDeNM 在几纳秒内提供了更大程度的采样,性能优于长标准 MD 模拟。观察到与来自实验源(X 射线、EPR 和 NMR)的运动推断以及通过元动力学获得的自由能估计有高度的相关性。最后,用 MDeNM 获得的大量构象可以用于更好地描述相关的动力学群体,从而可以更好地解释实验数据,例如 SAXS 曲线和 NMR 谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验