S Gomes Antoniel A, Costa Mauricio G S, Louet Maxime, Floquet Nicolas, Bisch Paulo M, Perahia David
Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France.
J Chem Theory Comput. 2024 Dec 24;20(24):10770-10786. doi: 10.1021/acs.jctc.4c01054. Epub 2024 Dec 12.
Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed "distributed points Molecular Dynamics using Normal Modes" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.
蛋白质是动态实体,具有多种构象,这些构象在其功能中起着关键作用。理解这些构象至关重要,蛋白质的集体运动,特别是那些由正常模式(NM)及其线性组合捕捉到的运动,为构象采样提供了一种强大的手段。这项工作引入了一种新方法,用于获得给定数量的最低频率NM组合向量的均匀取向集,并沿这些向量生成谐波等距约束结构。因此,它们都均匀地位于同心超球面上,系统地完全覆盖定义的NM空间。通过标准分子动力学(MD)模拟进一步松弛生成的结构,以探索构象空间。我们将这种方法称为“使用正常模式的分布式点分子动力学”(dpMDNM),通过将其应用于鸡蛋清溶菌酶和人细胞色素P450 3A4(CYP3A4)来评估其效率。为此,我们将我们的新方法与其他方法进行了比较,并分析了现有实验结构的采样情况。我们的结果证明了dpMDNM在广泛构象采样中的有效性,特别是在考虑更多NM时。由dpMDNM生成的集合展示了对实验结构的广泛覆盖,为溶菌酶和CYP3A4的功能方面提供了有价值的见解。此外,dpMDNM还覆盖了能量相对较高的溶菌酶结构,这些结构对应于标准MD模拟不易获得的瞬态状态,与核磁共振结构指示一致。这种方法为全面的蛋白质构象采样提供了一个有效且合理的框架,对我们理解蛋白质动力学和功能做出了重大贡献。