Tamura Koichi, Hayashi Shigehiko
Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan.
J Chem Theory Comput. 2015 Jul 14;11(7):2900-17. doi: 10.1021/acs.jctc.5b00120. Epub 2015 Jun 15.
Molecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding. The method introduces a biasing force based on a linear response theory, which determines a local reaction coordinate in the configuration space that represents linear coupling between local events of ligand binding and global conformational changes and thus provides one with fully atomistic models undergoing large conformational changes without knowledge of a target structure. The overall transition process involving nonlinear conformational changes is simulated through iterative cycles consisting of a biased MD simulation with an updated linear response force and a following unbiased MD simulation for relaxation. We applied the method to the simulation of global conformational changes of the yeast calmodulin N-terminal domain and successfully searched out the end conformation. The atomistically detailed trajectories revealed a sequence of molecular events that properly lead to the global conformational changes and identified key steps of local-global coupling that induce the conformational transitions. The LRPF method provides one with a powerful means to model conformational changes of proteins such as motors and transporters where local-global coupling plays a pivotal role in their functional processes.
蛋白质的分子功能通常是通过与局部事件(如配体分子结合)相耦合的全局构象变化来实现的。然而,蛋白质的高分子复杂性一直是获得全局构象转变原子水平视图的障碍,这对功能过程的机理理解造成了限制。在本研究中,我们开发了一种新的分子动力学(MD)模拟方法,称为线性响应路径跟踪(LRPF),用于模拟蛋白质在配体结合时的全局构象变化。该方法基于线性响应理论引入了一个偏置力,它在构型空间中确定一个局部反应坐标,该坐标表示配体结合的局部事件与全局构象变化之间的线性耦合,从而为人们提供了在无需了解目标结构的情况下经历大构象变化的全原子模型。涉及非线性构象变化的整体转变过程通过由带有更新的线性响应力的有偏MD模拟和随后的用于弛豫的无偏MD模拟组成的迭代循环来模拟。我们将该方法应用于酵母钙调蛋白N端结构域全局构象变化的模拟,并成功找到了最终构象。原子水平详细的轨迹揭示了一系列正确导致全局构象变化的分子事件,并确定了诱导构象转变的局部 - 全局耦合的关键步骤。LRPF方法为模拟蛋白质(如马达蛋白和转运蛋白)的构象变化提供了一种强大的手段,其中局部 - 全局耦合在其功能过程中起着关键作用。